Isometric immersions between spaces forms
空间形式之间的等距沉浸
基本信息
- 批准号:11640067
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hypersurfaces M^n with constant mean curvature in a Riemannian manifold M^^〜^<n+1> are solutions to the variational problem of minimizing the area function for certain variations ; the admissible variations are only those that leave a certain volume function fixed. This isoperimetric character of the variational problem associated to hypersurfaces with constant mean curvature introduces additional complications in the treatment of stability of such hypersurfaces.There are many complete hypersurfaces with constant mean curvature in Euclidean (n+1)-space R^<n+1> and Euclidean (n+1)-sphere S^<n+1>, but in the hyperbolic (n+1)-space H^<n+1> there have been few results on such hypersurfaces except umbilical ones. First main purpose of this paper is to construct one-parameter families of three distinct type, rotation hypersurfaces with constant mean curvature in H^<n+1>, explicitly.Barbosa, do Carmo and Eschenburg have defined the notion of stability for hypersurfaces M^n with constant mean curvature in a Riemannian manifold M^^〜^<n+1>. The case where M^2 is complete and noncompact is treated by da Silveira. The case where M^n, is compact is treated by Barbosa, do Carmo and Eschenburg. Luo has discussed the stability of complete noncompact hypersurfaces with constant mean curvature in R^<n+1>.Except for the case where H=0 very little is known about stability of complete and noncompact Riemannian hypersurfaces of H^<n+1> with constant mean curvature H, when 3【less than or equal】n. Second main purpose of this paper is to discuss the stability of the hypersurfaces in H^<n+1> with constant mean curvature H.
riemonian歧管中的M^n曲率m ^^〜^<n+1>是对某些变化的区域构度的溶液,该变异性与曲率相关的变体特征引入了曲率相关的变异特征高空曲面是许多完整的高度曲面) - 空间H^<n+1>很少有ombi lical lical of of of第一个主要目的OS。 n在riemannian歧管中的n+^<n+1>在r^ <n+1>中具有束缚平均曲率的紧凑型高度曲面的稳定性在这里h = 0,关于紧凑型非伴动riemannian riemannian Hypersurfaces H^ <n+1>的稳定性很少。 [小于或相等] n。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MORI,H.: "Hypersurfaces with constant mean curvature in the hyperbolic space and their global stability"in Mathematics Journal of Toyama University. (to appear).
MORI,H.:“双曲空间中具有恒定平均曲率的超曲面及其全局稳定性”,富山大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroohi meu: "Hypersurfaces with constant mean curvature on hyperbolic space and their global stability"Mathematical Journal of Togana University. (発表予定). (2001)
Hiroohi meu:“双曲空间上具有恒定平均曲率的超曲面及其全局稳定性”Togana 大学数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hireohi,Mori: "Hypersurfaces with constant man curvature in hyperbolic space and thin global stability"Mathematies Journal of Toyama University. (発表予定). (2001)
Hireohi, Mori:“双曲空间中具有恒定人曲率的超曲面和薄全局稳定性”富山大学数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kengo Matsumoto: "Dimension groups for subshifts and simplicity of the associated C^*-algebra"Journal of the Mathematical Society of Japan. vol.51, No.3. 679-698 (1999)
Kengo Matsumoto:“相关 C^* 代数的次移和简化的维度群”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Hiroshi其他文献
MORI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Hiroshi', 18)}}的其他基金
Soil microbial community analysis to identify syntrophic relationships between microbes
土壤微生物群落分析以确定微生物之间的互养关系
- 批准号:
24770015 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The molecular mechanism for Aβ oligomer hypothesis in Alzheimer's disease
Aβ寡聚体假说在阿尔茨海默病中的分子机制
- 批准号:
21390271 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular imaging ofAlzheimer amyloid
阿尔茨海默病淀粉样蛋白的分子成像
- 批准号:
17300114 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Analysis Method and Evaluation Test of Fresh Concrete.
新拌混凝土分析方法及评价试验的建立。
- 批准号:
14350300 - 财政年份:2002
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental study on the molecular mechanism for neuropathological changes of dementia
痴呆神经病理改变分子机制的基础研究
- 批准号:
13210119 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Enhancement of tumoricidal activity of microglial cell via CD40-CD40 ligand interaction
通过 CD40-CD40 配体相互作用增强小胶质细胞的杀肿瘤活性
- 批准号:
13470288 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Neuropathological study on Abeta toxicity using transgenic mice with human APP
使用人APP转基因小鼠进行Abeta毒性的神经病理学研究
- 批准号:
11680742 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Fracture Simulation Method of Brittle Material with Distinct Model
脆性材料离散模型断裂模拟方法研究
- 批准号:
11450205 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
The effect of presenilin-1 on cerebral amyloid protein
presenilin-1对脑淀粉样蛋白的影响
- 批准号:
09835024 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Easy Quality Control System for Fresh Concrete
新拌混凝土简易质量控制系统的开发
- 批准号:
09555175 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
具正平均曲率的厄密特度量的存在性及相关问题的研究
- 批准号:12371062
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
平均曲率流与子流形几何的若干研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于平均曲率流若干奇点问题的研究
- 批准号:12026262
- 批准年份:2020
- 资助金额:10.0 万元
- 项目类别:数学天元基金项目
渐近平坦流形中的稳定常平均曲率曲面
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
关于平均曲率流若干奇点问题的研究
- 批准号:12026251
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
相似海外基金
離散的な平均曲率一定曲面のクラスの広がり
离散常平均曲率曲面类的扩展
- 批准号:
19654010 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Application of integrable systems methods to surfaces with particular variational properties
可积系统方法在具有特定变分特性的表面上的应用
- 批准号:
15340023 - 财政年份:2003
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on surfaces of constant mean curvature one in hyperbolic space and its application
双曲空间中常平均曲率曲面的研究及其应用
- 批准号:
13640075 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Morse index of constant mean curvature surfaces and discrete constant mean curvature surfaces
常平均曲率面和离散常平均曲率面的莫尔斯指数
- 批准号:
12640070 - 财政年份:2000
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of surfaces in space forms
空间形式的表面几何
- 批准号:
11640080 - 财政年份:1999
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)