Study of Algebraic groups and Lie Algebras and Applications

代数群和李代数的研究及其应用

基本信息

  • 批准号:
    11640008
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

The existence of strong Gauss decompositions for general Kac-Moody groups has been proved. In the case of finite dimensional semisimple algebraic groups such a result was given before by V. Chernousov etc. In the infinite dimensional case, several ,new properties as well,as strong Gauss decompositions have been established. More explicitely, we letG = a Kac-Moody group,Z(G) = the center of G,T = the standard maximal torus,U = the standard maximal upper triangular unipotent subgroup,V = the standard maximal lower triangular unipotent subgroup.Then the following has been shown to be-true for every h[0x81b8(Shift-JIS)]T :G=Z(G)[0x81be(Shift-JIS)][0x81be(Shift-JIS)]__<g[0x81b8(Shift-JIS)]G>g(VhU)g^<-1>.Furthermore, using this, it has been proved that every noncentral element is able to be expressed as a product of two unipotent elements, which is a very strong result to study the group structure of a Kac-Moody group. As related topics, positive cones and semigroups have been discussed, and Matsumoto type presentations have been given for certain K-seniigroups. Also, some quasi-periodic structures have been studied as applications of algebraic group theory and algebraic number theory.
已经证明了一般的Kac-Moody群体的强高斯分解存在。在有限的尺寸半密度代数组的情况下,Chernousov烟.等在无限尺寸的情况下给出了这样的结果。更明确地,我们让我们结识=一个kac-moody组,z(g)= g,t =标准的最大圆环,u =标准的标准最大最大上三角形单位子组,v = =标准的最大下三角单位单位子组。 :G=Z(G)[0x81be(Shift-JIS)][0x81be(Shift-JIS)]__<g[0x81b8(Shift-JIS)]G>g(VhU)g^<-1>.Furthermore, using this, it has been proved that every noncentral element is able to be expressed as a product of two unipotent elements, which is a very strong result to study the group structure of a Kac-Moody Group。由于已经讨论了相关主题,正面的锥和半群,并为某些K-谱系提供了松本类型的演示。此外,已经研究了一些准周期结构作为代数群体理论和代数数理论的应用。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tatsuya Kimijima, Jun Morita: "A certain algebraic construction of quasicrystals and their isomorphism classes"Journal of Physics A : Math.Gen. 33. 8483-8487 (2000)
Tatsuya Kimijima、Jun Morita:“准晶体及其同构类的某种代数构造”物理学杂志 A :Math.Gen。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Robert Moody, Jun Morita: "Positivity for K_1 and K_2"Journal of Algebra. 229. 1-24 (2000)
罗伯特·穆迪 (Robert Moody)、森田淳 (Jun Morita):“K_1 和 K_2 的正性”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun Morita, Eugene Plotkin: "Prescribed Gauss decompositions for Kac-Moody groups over fields"Rendiconfi del Seminario Matematico de lla Universifa di Padova. 106. 153-163 (2001)
Jun Morita,Eugene Plotkin:“域上 Kac-Moody 群的规定高斯分解”Rendiconfi del Seminario Matematico de lla Universifa di Padova。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun Morita, Kuniko Sakamoto: "Shell structure of dodecagonal quasicrystals associated with root system F_4 and cyclotomic field Q(ζ_<12> )"Communications in Algebra. 28. 256-263 (2000)
Jun Morita、Kuniko Sakamoto:“与根系 F_4 和分圆场 Q(ζ_<12> ) 相关的十二角准晶体的壳结构”通讯代数 28. 256-263 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun Morita, Engene Plotkin: "Prescribed Gauss decompositions for Kas-Moody groups over Fields"Rendiconti del Seminario Matenatice dela Universita di Padora. 106. 153-163 (2001)
Jun Morita,Engene Plotkin:“域上 Kas-Moody 群的规定高斯分解”Rendiconti del Seminario Matenatice dela Universita di Padora。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORITA Jun其他文献

MORITA Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORITA Jun', 18)}}的其他基金

Study on the structures and representations of infinite dimensional algebraic groups and Lie algebras, and applications to quasiperiodic structures
无限维代数群和李代数的结构和表示的研究,以及在准周期结构中的应用
  • 批准号:
    26400005
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of infinite dimensional algebraic groups and Lie algebras, and an application to words and sequences
无限维代数群和李代数的研究以及在单词和序列中的应用
  • 批准号:
    23540006
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of infinite dimensional algebraic groups and Lie algebras, and applications to material science and life science
无限维代数群和李代数的研究及其在材料科学和生命科学中的应用
  • 批准号:
    19540006
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A research on algebraic groups and Kac-Moody groups, and their applications
代数群和Kac-Moody群的研究及其应用
  • 批准号:
    15540005
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A research of algebraic groups and Lie algebras
代数群和李代数的研究
  • 批准号:
    08454002
  • 财政年份:
    1996
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

利用Ringel-Hall 代数实现和研究若干李代数的结构
  • 批准号:
    11871014
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
量子群与量子代数的模及其相关理论
  • 批准号:
    11871325
  • 批准年份:
    2018
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
顶点算子代数的构造及分类
  • 批准号:
    11801419
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
李代数,量子群及其在组合数学中的应用
  • 批准号:
    11871190
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目
有理顶点算子代数的形变与量子化
  • 批准号:
    11701183
  • 批准年份:
    2017
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

頂点代数のコセットの構造の研究
顶点代数陪集结构的研究
  • 批准号:
    21K13775
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structure and Representations of Infinite-dimensional Algebraic Supergroups
无限维代数超群的结构和表示
  • 批准号:
    19K14517
  • 财政年份:
    2019
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on infinite dimensional algebraic groups and Lie algebras, and application to quasi-periodic and aperiodic structures
无限维代数群和李代数的研究及其在准周期和非周期结构中的应用
  • 批准号:
    17K05158
  • 财政年份:
    2017
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An application of global analysis of differential equations to representation theory
微分方程全局分析在表示论中的应用
  • 批准号:
    26800072
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Studies on symmetries for automorphic forms and Borcherds products
自守形式和 Borcherds 积的对称性研究
  • 批准号:
    26400027
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了