Research of Lattice Field Theory with rheta-Term by Renormalization Group
重正化群的带变项的格场论研究
基本信息
- 批准号:08640381
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On the basis of the previous research on U (1) gauge theory, we investigated U (2) lattice gauge theory with rheta-term in 2 dimensions by renormalization group.The reason to choose the group U(2) is that we are interested in the role of non Abelian part. The simplest among such group is U (2), so we began the study on this gauge group. The action is given by non Abelian real part and Abelian imaginary part in 2 dimensions. In contrast to 4 dimensional theory, we can not construct non Abelian imaginary part. This is because the topological term is given by iTrepsilon_<munu>F_<munu> in 2 dimensions, and it gives zero when we choose SU (2) (non Abelian) part.As a bare action, we adopt 1) real action ; defined by couplings, betal_1l_2=beta_<11> (l_1=4q, l_2=2I) * 0, (q means U (1) charge, and I means SU (2) isotopic spin), 2) imaginary action ; standard rheta action (i (rheta/2pi) Trepsilon_<munu>F_<munu>. This is defined by U (1) part.).After renomalization transformations, there appears non Abelian part in imaginary action, it, however, converges to zero after many renomalization group transformations.Phase transition occurs only when rheta=pi and in the irreducible representation which is trivial in SU (2), i.e., for ( (l_1, l_2) = (2,0), namely, the representation with q=1, I=0), but not in non trivial SU (2) representation ( (l_1, l_2) = (1,1), namely, q=1/2, I=1/2). This is due to the SU (2) confinement mechanism which forbids deconfinement transition even at rheta=pi.Real action approaches "heat kernel" type by renormalization group transformations. We are performing also 1) 4 dimensional Z_N theory with rheta-term, which is interesting because it is related with "duality" and "oblique confinement" (Imachi, Liu and Yoneyama), 2) numerical study of CP^<N-1> with N lager than 2 (Imachi, Kanou and Yoneyama).
基于先前关于U(1)量规理论的研究,我们研究了U(2)晶格计理论,其rheta-term在重新归一化组中具有2个维度。选择u(2)的理由是我们感兴趣的是我们感兴趣的。在非亚伯利亚部分的角色中。在此类组中,最简单的是u(2),因此我们开始了该量规组的研究。该动作是由非阿贝里安真实部分和阿贝尔假想部分在两个维度中给出的。与4维理论相反,我们无法构建非亚伯假想部分。这是因为拓扑术语由itrepsilon_ <munu> f_ <munu>在2个维度中给出,并且当我们选择su(2)(2)(非Abelian)部分时,它给出了零。由耦合定义,betal_1l_2 = beta_ <11>(l_1 = 4q,l_2 = 2i) * 0,(q表示U(1)电荷,我的意思是SU(2)同位素旋转),2)假想动作;标准rheta动作(i(rheta/2pi)trepsilon_ <munu> f_ <munu>。这是由u(1)部分定义的。在许多肾化组转换之后,零是零,仅在rheta = pi和不可减至的表示中发生,而在su(2)中是微不足道的(即((l_1,l_2)=(2,2,0), q = 1,i = 0),但在非琐事su(2)表示((l_1,l_2)=(1,1),即q = 1/2,i = 1/2)中不进行。这是由于SU(2)限制机制,该机制即使在rheta = pi.Real动作接近“热内核”类型的情况下,该机制也禁止解糊化过渡。我们还执行1)4维Z_n理论,具有rheta-enmer,这很有趣,因为它与“二元性”和“倾斜限制”(Imachi,liu and yoneyama),2)CP^<n-1的数值研究> n lager超过2(Imachi,Kanou和Yoneyama)。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M, Imachi, etal: "Renormalization Group Analysis of U(2) Gauge Theary with θ-Term in 2Dimensions" Prog Theor Phys.97,5. 791-808 (1997)
M,Imachi 等人:“二维 θ 项的 U(2) 规范理论的重正化群分析”Prog Theor Phys.97,5 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Imachi, T.Kakitsuka, N.Tsuzuki and H.Yoneyama: "Renormalization Group Analysis of U (2) Gauge Theory with rheta-term in 2 Dimensions" Prog.Theor.Phys.97. 791-808 (1997)
M.Imachi、T.Kakitsuka、N.Tsuzuki 和 H.Yoneyama:“二维 U (2) 规范理论与 rheta 项的重整化群分析”Prog.Theor.Phys.97。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Imachi, et al: "Renormatization Group Analysis of U (2) Gange Theory with θ Term in 2 Dimensions" Prog. Theor. Phys.97・5. 791-808 (1997)
M.Imachi 等人:“二维 θ 项的 U (2) Gange 理论的重整群分析”Prog. 791-808 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IMACHI Masahiro其他文献
IMACHI Masahiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IMACHI Masahiro', 18)}}的其他基金
Lattice Field Theory with theta-term and Renormalization Group
具有 theta 项和重正化群的格场论
- 批准号:
15540249 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NEW METHOD IN THE STUDY OF RELATIVISTIC BOUND STATES
相对论束缚态研究的新方法
- 批准号:
06640404 - 财政年份:1994
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Numerical and analytical investigations of the lattice gauge models at finite temperatures by renormalization group approach
通过重正化群方法对有限温度下的晶格规范模型进行数值和分析研究
- 批准号:
60540185 - 财政年份:1985
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Lattice Field Theory with theta-term and Renormalization Group
具有 theta 项和重正化群的格场论
- 批准号:
15540249 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies of Lattice Garuge Models with θ-Term by Numerical Simulations and Renormalization Group Method
含θ项格鲁格模型的数值模拟和重正化群法研究
- 批准号:
11640248 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological term and non-peruturbative fluctuations
拓扑项和非微扰涨落
- 批准号:
10640276 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Phase Structures of Field Thoeries with Topological Term
拓扑项场论的相结构
- 批准号:
07640417 - 财政年份:1995
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GEOMETRIC APPROACH TO QUANTUM ANOMALIES.
量子异常的几何方法。
- 批准号:
63540229 - 财政年份:1988
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)