Non-perturbative Analysis of Field Theories by Renormalization Group
重正化群对场论的非微扰分析
基本信息
- 批准号:08640361
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-perturbative dynamics of held theories has been one of the most important subject in particle physics. However we cannot help but saying that the present non-perturbative analytic methods are still in a rather poor level. We tried to develop the non-perturbative (exact) renormalization group (RG) as such a general method. We studied the formulation of the RG equations and the effective scheme of approximnation. Also we first have applied the non-perturbative RO to dynamical chiral symmetry breaking, which is quite significant phenomena in particle physics to be clarified, and developed the scheme of analysis. The non-perturbative phenomena like instanton effects have also analyzed through the non-perturbative RG method by studying the quantum mechanical models. As by-products, it has been found that the RG method is able to capture the famous spontaneous supersymmetry breaking.On the other hand we studied the non-perturbative dynamics in supersymmetric gauge thories. Especially we have clarified the several physical properties of N=2 supersymmetric QCD vacua ; symmetry breaking, CP symmetry, theta angle dependence, charges of dyons and so on.
理论的非微扰动力学一直是粒子物理学中最重要的课题之一。但我们不能不说,目前的非微扰分析方法还处于相当差的水平。我们尝试开发非微扰(精确)重正化群(RG)作为这样一种通用方法。我们研究了RG方程的表述和有效的逼近方案。我们还首次将非微扰RO应用于动态手性对称性破缺,这是粒子物理学中非常重要的现象,有待澄清,并制定了分析方案。通过研究量子力学模型,还通过非微扰RG方法对瞬子效应等非微扰现象进行了分析。作为副产品,人们发现RG方法能够捕获著名的自发超对称破缺。另一方面,我们研究了超对称规范理论中的非微扰动力学。特别是阐明了N=2超对称QCD真空的几个物理性质;对称性破缺、CP 对称性、theta 角依赖性、dyon 电荷等。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Konishi: "CP,Charge fractionalization and low energy effective actions in the SU(2) Seiberg-Witten theories with quarks" Nuclear Physics. B511. 264-294 (1998)
K.Konishi:“夸克 SU(2) Seiberg-Witten 理论中的 CP、电荷分裂和低能有效作用”核物理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.-I.Aoki: "Non-perturbative Renormalization Group Analysis of the Chiral Critical Behavior in QED" Progress of Theore tical Physics. 97 No.3. 479-489 (1997)
K.-I.Aoki:“QED 中手征临界行为的非微扰重正化群分析”理论物理进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K-I.Aoki, K.Horikawa, W.Souma, J.Sumi, H.Terao: "Rapidly Converging Truncation Scheme of the Exact Renormalization Group" Progress of Theoretical Physics. 99(to be published). (1988)
K-I.Aoki、K.Horikawa、W.Souma、J.Sumi、H.Terao:“精确重正化群的快速收敛截断方案”理论物理进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.-I.Aoki: "Rocpialy Converging Truncation scleme of the Exact Renomalization Group" Progress of Theoretical Physics. 99 No.31. 451-466 (1998)
K.-I.Aoki:“精确重整群的 Rocpialy 收敛截断方案”理论物理进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Konishi: "CD.Charge fractionalitations and low energy effective octions in the SU(2) Seiberg-Witter tleories with quarks" Nuclear Physics. B511. 264-294 (1998)
K.Konishi:“夸克 SU(2) Seiberg-Witter 理论中的 CD.电荷分馏和低能有效作用”核物理。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TERAO Haruhiko其他文献
TERAO Haruhiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TERAO Haruhiko', 18)}}的其他基金
Non-perturbative analysis of conformal gauge theories by renormalization group
重正化群对共形规范理论的非微扰分析
- 批准号:
24540275 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Models beyond the standard model with new mechanisms for the hierarchy problem
超越标准模型的模型,具有解决层次结构问题的新机制
- 批准号:
17540245 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-perturbative Renormalization Group and Dynamical Problems in Particle Physics
粒子物理中的非微扰重整化群和动力学问题
- 批准号:
13640272 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
抑制开放量子系统中退相干效应的代数动力学方法
- 批准号:61203062
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Non-Perturbative Analysis of Physical and Mathematical Models
物理和数学模型的非微扰分析
- 批准号:
2206241 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052572 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052519 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Large-N analysis of irrelevant deformations of quantum field theory and their non-perturbative aspects
量子场论的不相关变形及其非微扰方面的大 N 分析
- 批准号:
21J14825 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052899 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant