Algebraic analysis of infinite symmetry

无限对称的代数分析

基本信息

  • 批准号:
    08454006
  • 负责人:
  • 金额:
    $ 3.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

1. Kazhdan-Lusztig Conjecture Lusztig conjectured that the irreducible character of highest weight modules with negative level is given by the Kazhdan-Lusztig polynomials. This conjecture had been proved in the integral level case. We succeeded to prove this conjecture in the non-integral case. This leads us to prove another conjecture of Lusztig on the modular representation of Chevalley groups.2. Study of Crystal bases We succeeded to construct the Fock representations of the quantum affine algebras starting from an arbitrary finite-dimensional representations with perfect crystal. This is obtained as an analytic continuation from |q|<< 1. Furthermore we showed that this Fock representation decomposes to the tensor product of the Boson Fock space and the irreducible highest modules of the quantum affine algebras.These results are recently applied to the study of modular representations of spin symmetric groups by the young French mathematicians Leclerc-Thibon.3. Study of solvable models The solution to the q-KZ equation has been known when its parameter q satisfies |q|< 1. We constructed its solution when |q|=1 and studied its properties. This solution is supposed to be the correlation function of XXZ-model in the gap-less regime and we expect its further development.4. Study of vertex operators Vertex operator is an operator on the irreducible highest weight modules indexed by finite-dimensional representation of quantum affine algebra. We analyze the vertex operator via crystal bases and leads to a new class of representations of quantum affine algebras.
1。Kazhdan-lusztig猜想lusztig猜想,具有负水平的最高权重模块的不可减至特征是由Kazhdan-Lusztig多项式给出的。在整体级别的情况下已证明了这一猜想。我们成功证明了在非综合案例中的猜想。这使我们证明了卢斯蒂格在雪瓦利组的模块化表示方面的另一个猜想。2。晶体碱基的研究我们成功地构建了从任意有限维表示的量子代数代数的FOCK表示,具有完美的晶体。这是从| q | << 1。此外,我们证明该FOCK表示将量子仿射代数的张量和不可约最高模块分解为量子仿射代数的张量。这些结果最近适用于年轻法语数学的模块化对称性组的研究。可解决模型的研究q-kz方程的解决方案在其参数q满足| q | <1时已知。当| q | = 1时,我们构建了其解决方案并研究了其属性。该解决方案被认为是无差距制度中XXZ模型的相关函数,我们期望它的进一步发展。4。顶点操作员顶点操作员的研究是量子仿射代数有限维代表索引的不可还原最高权重模块的操作员。我们通过晶体碱基分析顶点操作员,并导致量子仿射代数的新表示。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kashiwara, Masaki and Tanisaki, Toshiyuki: "Kazhdan-Lusztig conjecture for affine Lie algebra with negative level, II,Non-integral case" Duke Math.J.84. 771-813 (1996)
Kashiwara、Masaki 和 Tanisaki、Toshiyuki:“负级仿射李代数的 Kazhdan-Lusztig 猜想,II,非整数情况”Duke Math.J.84。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iwata, Satoru and Murota, Kazuo: "Horizontal principal structure of layred mixed matrices : Decomposition of discrete systems by design-variable selections" SIAM J.Sci.Discrete Math.9,1. 71-86 (1996)
Iwata、Satoru 和 Murota、Kazuo:“分层混合矩阵的水平主要结构:通过设计变量选择分解离散系统”SIAM J.Sci.Discrete Math.9,1。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Masaki Kashiwara: "Moderate and formal cohomology of Q associated with constructible sheaves" Memoire de la Soc.Math.de France. No.64. (1996)
Masaki Kashiwara:“与可构造滑轮相关的 Q 的适度和形式上同调”Memoire de la Soc.Math.de France。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kashiwara, Masaki and Tanisaki, Toshiyuki: "Kazhdan-Lusztig conjecture for affine Lie algebra with negative level,II,Non-integral case" Duke Math.J.84. 771-813 (1996)
Kashiwara、Masaki 和 Tanisaki、Toshiyuki:“负级仿射李代数的 Kazhdan-Lusztig 猜想,II,非整数情况”Duke Math.J.84。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jimbo, Michio and Miwa, Tetsuji: "Quantum KZ equation with |q|=1 and correlation function of the XXZ model in the gapless regime" J.Phys.A : Math.Gen.29. 2923-2958 (1996)
Jimbo, Michio 和 Miwa, Tetsuji:“|q|=1 的量子 KZ 方程和无间隙状态下 XXZ 模型的相关函数”J.Phys.A:Math.Gen.29。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 17 条
  • 1
  • 2
  • 3
  • 4
前往

KASHIWARA Masaki的其他基金

Algebraic analysis of infinite symmetry
无限对称的代数分析
  • 批准号:
    22340005
    22340005
  • 财政年份:
    2010
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Algebraic Analysis of Infinite Symmetry
无限对称的代数分析
  • 批准号:
    18340007
    18340007
  • 财政年份:
    2006
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Algebraic Analysis of Representation Theory
表示论的代数分析
  • 批准号:
    13440006
    13440006
  • 财政年份:
    2001
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Algebraic analysis of representation theory
表示论的代数分析
  • 批准号:
    09304003
    09304003
  • 财政年份:
    1997
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
    Grant-in-Aid for Scientific Research (A).
Studies of Algebraic Analysis
代数分析研究
  • 批准号:
    63460005
    63460005
  • 财政年份:
    1988
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
    Grant-in-Aid for General Scientific Research (B)

相似国自然基金

无限层镍氧化物超导对称性与配对机理的输运特性研究
  • 批准号:
    12174325
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Algebraic analysis of infinite symmetry
无限对称的代数分析
  • 批准号:
    22340005
    22340005
  • 财政年份:
    2010
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Infinite-dimensional symmetry of exactly solvable models and various physical applications in the finite-size quantum many-body systems
精确可解模型的无限维对称性以及有限尺寸量子多体系统中的各种物理应用
  • 批准号:
    20540365
    20540365
  • 财政年份:
    2008
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
Algebraic Analysis of Infinite Symmetry
无限对称的代数分析
  • 批准号:
    18340007
    18340007
  • 财政年份:
    2006
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Level crossings in integrable finite-size quantum systems with infinite-dimensional symmetry and solvable models in nanoscopic or mesoscopic systems
具有无限维对称性的可积有限尺寸量子系统中的能级交叉以及纳米或介观系统中的可解模型
  • 批准号:
    17540351
    17540351
  • 财政年份:
    2005
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)
The study of infinite product formulae for the Jackson integrals with Weyl group symmetry and their applications.
具有Weyl群对称性的Jackson积分的无限乘积公式及其应用的研究。
  • 批准号:
    15540045
    15540045
  • 财政年份:
    2003
  • 资助金额:
    $ 3.46万
    $ 3.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)