Construction of actions of operator algebraic quantum groups on injective factors and their classification
算子代数量子群对内射因子作用的构造及其分类
基本信息
- 批准号:09640142
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Yamanouchi has made an intensive research on actions of compact Kac algebras on von Neumann algebras. He introduced a notion of Connes spectrum for such actions in order to provide a tool for classification of such a class of actions on operator algebras. He proved among others that the crossed product by a compact Kac algebra action is a factor if and only if the action is centrally ergodic and has full Connes spectrum, which clarified that Connes spectrum largely dominates behavior of this kind of actions. He next showed that, when a compact Kac algebra action is minimal, it is at the same time dominant, and studied a Galois correspondence induced by such an action. Meanwhile, in order to capture quantum groups in the framework of von Neumann algebras that are not in the category of Kac algebras, Yamanouchi introduced a notion of a quasi Woronowicz algebra. He showed that this class of operator algebra quatum groups contains, as examples, q-deformations of Lie groups as well as q … More uantum groups that derive from matched piars of locally compact groups by the method of Takeuchi-Majid.(2) Sekine independently succeeded in characterizing factoriality of the crossed product by an action of a compact Kac algebra using a methos different from Yamanouchi's. His result generalizes a classical theorem by Paschke.(3) Kishimoto has made a very unique research on automorphisms on AT-CィイD1*ィエD1-algebras. He has especially studied automorphisms with the Rohlin property. As a result, he was able to give characterizations as to when an automorphism on a simple, real-rank zero AT-CィイD1*ィエD1-algebra has the Rohlin property. He showed also that one can contstruct on such a CィイD1*ィエD1-algebra a one-papameter automorphism group with the Rohlin property, and proved that the crossed product by it is again a simple real-rank zero AT-CィイD1*ィエD1-algebra. Meanwhile, Kishimoto showed that, for an arbitrary pair of simple dimension groups, one can construct a simple real-rank zero AT-CィイD1*ィエD1-algebra and a one-parameter automorphism group on it such that the K-groups of the associated crossed product are exactly the given dimension groups. Less
(1)Yamanouchi对von Neumann代数的紧凑型KAC代数的作用进行了深入的研究。他引入了针对此类行动的Connes Spectra的概念,以便为操作员代数的类别分类提供一种工具。他被证明,通过紧凑的KAC代数作用交叉的产品是一个因素,并且仅当该动作在中央呈颈并具有完整的Connes Spectra时,这阐明了Conns Spectra在很大程度上主导了这种行为的行为。接下来,他表明,当紧凑的KAC代数作用最少时,它同时占主导地位,并研究了这种动作引起的GALOIS对应关系。同时,为了捕获不在KAC代数类别的von Neumann代数框架中,Yamanouchi引入了Quasi Woronowicz代数的概念。作为示例,组包含谎言组的Q- Q- Q-更多的Q…更多的Uantum群体,这些群体通过Takeuchi-Majid的方法从局部紧凑型组的匹配的匹配中得出。(2)Sekine通过使用与Yamanatouchi的方法不同的方法来独立表征交叉产品的sekoriality of Crositiality conterality of Crossiality fictection。他的结果通常是Paschke的古典定理。(3)Kishimoto进行了一项非常独特的研究,他特别研究了Rohlin物业的自动形态。结果,他能够给出角色,即何时在简单的,现实级的零AT-CII D1*IE D1-Algebra具有Rohlin属性上。他还表明,一个可以与Rohlin属性一起使用这样的CII D1*IE D1代数为单一型自动形态组,并证明其交叉产品再次是一个简单的真实现实级的AT-CII D1*IE D1 D1-Algebra。同时,基希莫托(Kishimoto)表明,对于任意的简单维度组,可以构建一个简单的实级零at-cii d1*ie d1 d1-algebra和一个单参数仪自动形态组,以便相关的交叉产品的k组恰好是给定的尺寸组。较少的
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Kishimoto: "Trace scaling automorphisms of certain stable AF algebras"Hokkaido Math. J.. 26. 211-224 (1997)
A. Kishimoto:“某些稳定 AF 代数的迹标度自同构”北海道数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Akitaka KISHIMOTO(with D.E.Evans): "Trace scaling automorphisms of certain stable AF algebras"Hokkaido Mathematical Journal. 26. 211-224 (1997)
Akitaka KISHIMOTO(与 D.E.Evans):“某些稳定 AF 代数的迹标度自同构”北海道数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
YOSHIHIRO SEKINE: "An analogue of Paschke's theorem for actions of compact Kac algebras" Kyushu Journal of Mathematics. (掲載予定).
YOSHIHIRO SEKINE:“紧致 Kac 代数作用的 Paschke 定理的模拟”九州数学杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Yamanouchi: "Double group construction of quantum groups in the von Neumann algebra framework"J. Math. Soc. Japan. (in press).
T. Yamanouchi:“冯诺依曼代数框架中量子群的双群构造”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro SEKINE: "An analogue of Paschke's theorem for actions of compact Kac algebras"Kyushu Journal of Mathematics. 52. 353-359 (1998)
Yoshihiro SEKINE:“紧凑 Kac 代数作用的 Paschke 定理的类似物”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMANOUCHI Takehiko其他文献
YAMANOUCHI Takehiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMANOUCHI Takehiko', 18)}}的其他基金
Research on von Neumann algebras from a viewpoint of their close relation with ergodic theory
从冯·诺依曼代数与遍历理论的密切关系研究冯·诺依曼代数
- 批准号:
19540206 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Systematic study of quantum groups from the viewpoint of operator algebras
从算子代数角度系统研究量子群
- 批准号:
12640199 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
简化版SM4分组密码在变分量子算法攻击下的安全性
- 批准号:62372048
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
线性方程组量子求解算法(HHL算法)的精确受控旋转研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
线性方程组量子求解算法(HHL算法)的精确受控旋转研究
- 批准号:62273154
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
非富勒烯修饰的黑磷量子点作为第三组分应用于非富勒烯有机太阳能电池的研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非富勒烯修饰的黑磷量子点作为第三组分应用于非富勒烯有机太阳能电池的研究
- 批准号:52103219
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
A research on algebraic groups and Kac-Moody groups, and their applications
代数群和Kac-Moody群的研究及其应用
- 批准号:
15540005 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on quantum matrices and Hopf algebras
量子矩阵和Hopf代数研究
- 批准号:
11640007 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Noncommutative Geometry for Quantum Groups
量子群的非交换几何
- 批准号:
09640210 - 财政年份:1997
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Co-operative Research in Representation Theory
表示论合作研究
- 批准号:
05302001 - 财政年份:1993
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Studies of Algebraic Analysis
代数分析研究
- 批准号:
63460005 - 财政年份:1988
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)