Projective structures on compex manifolds
复流形上的射影结构
基本信息
- 批准号:09640129
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our main object of study is a class of compact complex 3-manifolds which contain a subdomain U biholomorphic to a neighborhood of a projective line ill a complex projective 3-space. We call such a class of manifolds by Class L. Such manifolds do not admit projective structures in general, but very deeply related to complex manifolds which admit projective structures. To classify all Class L. manifolds, it seems very important to consider the existence problem of Cauduchon metric near a singular fibre of a 1-parameter family of surfaces, and we are now very near to the complete solution.To carry out our plan of classification of Class L manifolds, a series of theorems of S. Ivashkovich on the extension of meromorphic maps play important roles. On the other hand, our manifolds of Class L supply us with many interesting examples on extension problems of meromorphic maps. N. Okada (Sophia Univ. Graduate Course) constructed an example of Schottky type Class L manifolds, gave a holomorphic map of a Hartogs domain to the manifold whichl cannot he extended meromorphically across a fractal set, and estimated the Hausdorff dimension of the singular set. With Y. Kamozawa (NTT), we have obtained a explicit formula of characteristic forms on a holomorphic foliation which admits a holomorphic projective connection.
我们的主要研究对象是一类紧凑的复合体3个序列,其中包含一个子域U生物形态,以射影线生病的一个复杂的投射3空间。我们称之为L级的一类流形。这样的歧管通常不承认投射结构,而是与接纳投影结构的复杂流形密切相关。 To classify all Class L. manifolds, it seems very important to consider the existence problem of Cauduchon metric near a singular fibre of a 1-parameter family of surfaces, and we are now very near to the complete solution.To carry out our plan of classification of Class L manifolds, a series of theorems of S. Ivashkovich on the extension of meromorphic maps play important roles.另一方面,我们的L类歧管为我们提供了许多有趣的示例,内容涉及Meromormormormormormormorphic Maps的扩展问题。 N. okada(SophiaUniv。ArtineRouse课程)构建了Schottky Type类L歧管的示例,给了Hartogs域的全体形态图,并向歧管提供了他不能在分形集合上扩展Meromororormororormororormororormororormororormorormororormoror的图,并估计了单一奇数集的Hausdorff Dimension。借助Y. Kamozawa(NTT),我们在全体形态叶片上获得了一个明确的特征形式公式,该叶片接受了全体形态的投射连接。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kamozawa, Yoshikatsu; Kato, Masahide: "On characteristic forms of holomorphic foliations"Tpkyo J. Math.. 22. 43-64 (1999)
鸭泽,吉胜;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
長野 正: "The involutims of ceupact symnetric spaces III" Tokyo J.Math.18. 193-212 (1995)
Tadashi Nagano:“ceupact 对称空间 III”Tokyo J.Math.193-212 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Komazawa: "On characteristic forms of holomorphic foliations"Tokyo J . Math.. 22. 43-64 (1999)
Y. Komazawa:“论全形叶状结构的特征形式”Tokyo J 。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
並河良典: "Global Rmoothing of Calabi-Yau threefolds" Inveutiones Math.122. 403-419 (1995)
Yoshinori Namikawa:“Calabi-Yau 三倍的全局平滑”Inveutiones Math.122 (1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
加藤昌英: "Compact quotieut manifolds of domains in a complex 3-dimensional projective space and the Lebesgue measure of liuit Rets" Tokyo J.Math.19. 99-119 (1996)
Masahide Kato:“复杂 3 维射影空间中域的紧致商流形和 liuit Rets 的勒贝格测度”Tokyo J.Math.19 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Masahide其他文献
KATO Masahide的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Masahide', 18)}}的其他基金
Extension property of holomorphic maps and the structure of complex manifolds
全纯映射的可拓性与复流形的结构
- 批准号:
19540100 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extension property of holomorphic maps and complex structures of the target manifolds
全纯映射的可拓性质和目标流形的复杂结构
- 批准号:
17540094 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于结构语义感知和多视角投影优化的高精度手部网格重建研究
- 批准号:62366018
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于非朗伯反射模型的光度-面结构光投影协同测量方法及其应用研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
基于非朗伯反射模型的光度—面结构光投影协同测量方法及其应用研究
- 批准号:52175477
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
无中微子双贝塔衰变原子核矩阵元中手征两体流的研究
- 批准号:11905175
- 批准年份:2019
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于多组态混合的超越Skyrme-Hartree-Fock平均场模型对Λ超核能谱的研究
- 批准号:11905165
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A study of the structure of inner projections of projective varieties and its applications
射影簇内投影结构研究及其应用
- 批准号:
20K03531 - 财政年份:2020
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical and theoretical investigations of the variation of conventional implicatures: With special reference to viewpoint and dependency
传统含义变化的实证和理论研究:特别涉及观点和依赖性
- 批准号:
18K00531 - 财政年份:2018
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The embedding structure, defining ideals and the projective m-normality of projective varieties
嵌入结构、定义理想和射影簇的射影 m-正态性
- 批准号:
17K05197 - 财政年份:2017
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The embedding structure, defining ideals and the projective m-normality of projective varieties
嵌入结构、定义理想和射影簇的射影 m-正态性
- 批准号:
26400041 - 财政年份:2014
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discrete Projective Differential Geometry: Comprehensive Theory and Integrable Structure
离散射影微分几何:综合理论与可积结构
- 批准号:
DP140100851 - 财政年份:2014
- 资助金额:
$ 2.18万 - 项目类别:
Discovery Projects