THEORETICAL INVESTIGAYTION OF QUANTUM HALL EFFECT
量子霍尔效应的理论研究
基本信息
- 批准号:07640522
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Various problems of Quantum Hall effect are studied based on field theory that is formulated using von Neumann lattice representation and the following new results have been obtained.1. Integer Quantum Hall effectInteger quantum Hall effect is used for standard of resistance and for determining the fine strusture constant. Concerning finite size effect and finite current effect, it was shown in this project that under sufficently strong magnetic field, corrections vanish and the Hall conductance is quantized exactly in realistic two-dimensional systems. The quantum Hall effect disappears, however, if thhe current exceeds a critical value. The critical Hall field is proportional to two halvth of the magnetic field.2. Fractional Hall effectA new mean field theory of the fractional Hall effect based on flux condenced state on von Neumann lattice is proposed. In this theory, one particle spectrum has a fractal structure owing to two scales of the system, lattice constant and flux per plaquette. The latter is connected with the filling factor. It is shown, for the first time, that the fractional Hall effect is understood from Hofstadter butterfly.3. Periodic potentials in the strong magnetic field and dualityOne particle spectra of the systems with periodic short range potentials are obtained by using von Neumann lattice representation. A kind of duality relation is shown to be hold.4. A symmetry breaking of topological field theory by Gribov copies is analyzed.
基于冯·诺依曼晶格表示形式的场论研究了量子霍尔效应的各种问题,取得了以下新成果: 1.整数量子霍尔效应整数量子霍尔效应用于电阻标准和确定精细结构常数。关于有限尺寸效应和有限电流效应,该项目表明,在足够强的磁场下,修正消失,霍尔电导在现实的二维系统中被精确量化。然而,如果电流超过临界值,量子霍尔效应就会消失。临界霍尔场与磁场的二分之一成正比。2.分数霍尔效应提出了一种基于冯诺依曼晶格通量凝聚态的分数霍尔效应新平均场理论。在这一理论中,由于系统的两个尺度、晶格常数和每块通量,一个粒子光谱具有分形结构。后者与填充因子有关。首次表明,从Hofstadter蝴蝶中理解了分数霍尔效应。 3.利用冯·诺依曼晶格表示,获得了强磁场中的周期势和对偶性短程势周期系统的粒子谱。证明了一类对偶关系成立。 4.分析了 Gribov 副本对拓扑场论的对称性破缺。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
石川健三: "On the abseme of fimite size Corrections in the quanitized Hall conductoo" Phipics Letters A. 210. 321-327 (1996)
Kenzo Ishikawa:“关于量化霍尔导体中有限尺寸修正的限制”Phipics Letters A. 210. 321-327 (1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Ishikawa: "Flur state in von Neumann Lattices and the Fractional Hall Effect" Prog. Theoretical. Physics. 97.3(印刷中). (1997)
K. Ishikawa:“冯诺依曼晶格中的 Flur 状态和分数霍尔效应”物理学进展 97.3(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
前田展希: "chiral Amamaly and Effective Field Theory for the quantrm Hall Liquid Lsth.Edges" Physis Letters B. (印刷中). (1996)
Noki Maeda:“量子霍尔液体 Lsth.Edges 的手性 Amamaly 和有效场论”Physis Letters B.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Sako: "Topological Symmetry Breaking on Einstein Manifolds" Int. Jour. Modern Phys. A. (印刷中). (1997)
A. Sako:“爱因斯坦流形上的拓扑对称性破缺”《现代物理学》杂志(1997 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHIKAWA Kenzo其他文献
ISHIKAWA Kenzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHIKAWA Kenzo', 18)}}的其他基金
Interference and diffraction of the neutrino and the absolute neutrino mass
中微子的干涉和衍射以及绝对中微子质量
- 批准号:
24340043 - 财政年份:2012
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Moon by mean of Solar neutrino
利用太阳中微子分析月球
- 批准号:
19540253 - 财政年份:2007
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supersymmetric gauge theory and physics of precision measurement
超对称规范理论与精密测量物理
- 批准号:
16081201 - 财政年份:2004
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
LOW DIMENSIONAL FIELD THEORIES AND THEIR APPLICATIONS
低维场理论及其应用
- 批准号:
10044043 - 财政年份:1998
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Theorles of Superconductivity and Quantum Hall Effect Via Chem-Simons Gauge Theory.
通过化学-西蒙斯规范理论的超导理论和量子霍尔效应。
- 批准号:
03640256 - 财政年份:1991
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
場の理論における低エネルギー定理とその応用についての研究
低能定理及其在场论中的应用研究
- 批准号:
61540189 - 财政年份:1986
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Phase Competition and Domain Textures in the Fractional Quantum Hall Effect
分数量子霍尔效应中的相位竞争和域纹理
- 批准号:
2103965 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant
Investigating the fractional quantum Hall effect using diagrammatic techniques.
使用图表技术研究分数量子霍尔效应。
- 批准号:
2444312 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
EAGER: BRAIDING: Demonstration of Topological Qubits Using Non-Abelian Anyons in the Fractional Quantum Hall Effect
EAGER:编织:在分数量子霍尔效应中使用非阿贝尔任意子演示拓扑量子位
- 批准号:
1836908 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Theory of Novel Excitations in the Fractional Quantum Hall Effect
分数量子霍尔效应中的新激发理论
- 批准号:
1005536 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant
Experiments on Fractional Quantum Hall Effect and Related Physics in New Regimes
新机制下分数量子霍尔效应及相关物理实验
- 批准号:
0352533 - 财政年份:2004
- 资助金额:
$ 1.41万 - 项目类别:
Continuing Grant