L2M NSERC - Coherence-based LiDAR

L2M NSERC - 基于相干的激光雷达

基本信息

  • 批准号:
    580679-2023
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Idea to Innovation
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Laser imaging, Detection, and Ranging (LiDAR) technology is used for many applications including topographical surveying, velocity measurement, target-detection, and more recently for detecting small obstructions for autonomous navigation, as well as monitoring sea levels in the face of climate change. Typically, LiDAR systems operate in the high Signal-to-Noise Ratio (SNR) regime. Meaning, bright laser pulse energies are required to overcome ambient noise (daylight) for the reliable detection of reflected signal. There is a need for LiDAR systems capable of operating at lower laser energies. First and foremost, this will help in covert operations, where a bright laser source could reveal the position of the sensor, or interfere with imaging systems. Capability to operate at lower signal levels also enables a wider angle of view and longer ranges. So far, using lower-powered lasers has been a major technical challenge for conventional LiDAR systems as they would no longer operate in a high-SNR regime. The ambient optical noise floods the weak signal and makes detection nearly impossible. Our research team has designed and demonstrated a low-SNR LiDAR system which cancels out noise and enhances the signature of the laser signal. The latest technology available for long-range target-detection uses laser powers in the range of watts to kilowatts. This high intensity of light is used in order to enable reliable detection of reflected light. For covert operation, the goal is to disable detection by external parties of the very same bright light. Our technology operates at milliwatt level, meaning it is hard to detect the light in the first place, but at the same time achieves a noise cancellation to increase the SNR. To our knowledge, no other vendor provides a similar solution.
激光成像、探测和测距 (LiDAR) 技术可用于许多应用,包括地形测量、速度测量、目标探测,最近还用于探测自主导航的小障碍物,以及在气候变化情况下监测海平面。通常,LiDAR 系统在高信噪比 (SNR) 状态下运行。这意味着,需要明亮的激光脉冲能量来克服环境噪声(日光),以便可靠地检测反射信号。需要能够在较低激光能量下运行的激光雷达系统。首先,这将有助于秘密行动,其中明亮的激光源可以揭示传感器的位置,或干扰成像系统。在较低信号水平下运行的能力还可以实现更宽的视角和更长的范围。到目前为止,使用较低功率的激光器一直是传统激光雷达系统的主要技术挑战,因为它们将不再在高信噪比条件下运行。周围的光噪声淹没了微弱的信号,使得检测几乎不可能。我们的研究团队设计并演示了一种低信噪比激光雷达系统,该系统可以消除噪声并增强激光信号的特征。用于远程目标探测的最新技术使用瓦到千瓦范围内的激光功率。使用这种高强度的光是为了能够可靠地检测反射光。对于秘密操作,目标是阻止外部各方检测到相同的亮光。我们的技术在毫瓦级运行,这意味着一开始就很难检测到光,但同时实现了噪声消除以提高信噪比。据我们所知,没有其他供应商提供类似的解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennewein, ThomasD其他文献

Jennewein, ThomasD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennewein, ThomasD', 18)}}的其他基金

Qeyssat User INvestigation Team (QUINT)
Qeyssat 用户调查团队 (QUINT)
  • 批准号:
    578460-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Canada-UK Quantum Technologies call: Reference-Frame Independent Quantum Communication for Satellite-Based Networks (ReFQ)
加拿大-英国量子技术呼吁:基于卫星网络的参考框架独立量子通信 (ReFQ)
  • 批准号:
    556321-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Qeyssat User INvestigation Team (QUINT)
Qeyssat 用户调查团队 (QUINT)
  • 批准号:
    578460-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants
Canada-UK Quantum Technologies call: Reference-Frame Independent Quantum Communication for Satellite-Based Networks (ReFQ)
加拿大-英国量子技术呼吁:基于卫星网络的参考框架独立量子通信 (ReFQ)
  • 批准号:
    556321-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants

相似海外基金

NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
  • 批准号:
    2341206
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
NSERC/FCA Industrial Research Chair in electrified powertrains
NSERC/FCA 电气化动力总成工业研究主席
  • 批准号:
    535968-2017
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Industrial Research Chairs
NSERC/Huawei Technologies Canada Industrial Research Chair in Dense Broadband Wireless Access Networks(dBwan)
NSERC/华为技术加拿大密集宽带无线接入网络(dBwan)工业研究主席
  • 批准号:
    366566-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Industrial Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了