Research on Computational Aids to Intellectual Discovery
智力发现的计算辅助研究
基本信息
- 批准号:06044276
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Overseas Scientific Survey.
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The subject of the joint Anglo-Japanese research initiative is"Machine intelligence tools for discovery in science and technology."In particular, we studied the use of three approaches :*Inductive Logic Programming*Neural network and related statistical learning techniques*Database miningIn more detail, we investigated how to realize discovery and creation by computer using an Inductive Logic Programming system PROGOLdeveloped by Muggleton. As a result, we found that it is possible toachieve higher order concept learning and analogical reasoning by introducing new predicates in background knowledge in the input of PROGOL.Furthermore, we investigated how to discover knowledge in database and found the necessity to extract relevant information from database to adjust as an input to PROGOL.Also we found the importance of creating appropriate"negative examples"and"background knowledge". Then, we pursued the possibility to parallelize PROGOL in order to achieve high efficiency for dealing with large database. As an application of ILP,we picked up natural language processing. We investigated the Japanese correspondence to the verb"break"by investigating the degree of affinity to various nouns by cognitive psychological experiments and obtained a rule for predicting the affinity to a new noun. In scientific discovery, it is essential to be able to refute a wholehypothsis space by just investigating finite number of hypothesis. We found it possible to achieve such refutability of hypothsis spaces for a fairly large class of hypothsis spaces.
The subject of the joint Anglo-Japanese research initiative is"Machine intelligence tools for discovery in science and technology."In particular, we studied the use of three approaches :*Inductive Logic Programming*Neural network and related statistical learning techniques*Database miningIn more detail, we investigated how to realize discovery and creation by computer using an Inductive Logic Programming system PROGOLdeveloped by Muggleton.结果,我们发现,通过在progol的输入中引入新谓词来实现高阶概念学习和类似推理。Furthermore。我们研究了如何发现数据库中的知识,并发现从数据库中提取相关信息以适应对Progol的投入。然后,我们追求并行化progol的可能性,以实现高效率来处理大型数据库。作为ILP的应用,我们选择了自然语言处理。我们通过认知心理实验调查了对各种名词的亲和力,并获得了预测新名词的亲和力的规则,从而调查了日本与动词“中断”的对应。在科学发现中,必须仅通过研究有限的假设来反驳全能空间。我们发现,有可能在相当大的假设空间中实现假设空间的这种可比性。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E.Hirowatari and Setsuo Arikawa: "Partially isomorphic generalization and analogical reasoning" Proc.7th European Conference on Machine Learning. 784. 234-254 (1994)
E.Hirowatari 和 Setsuo Arikawa:“部分同构泛化和类比推理”Proc.7th 欧洲机器学习会议。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
石崎 俊,田中 茂範,今井 むつみ: "柔軟な意味解析のための概念空間の定量化" 情報処理学会 自然言語処理研究会. 100. 17-24 (1994)
Shun Ishizaki、Shigenori Tanaka、Mutsumi Imai:“灵活语义分析的概念空间的量化”日本信息处理学会自然语言处理研究组。 100. 17-24 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Mukouchi and Setsuo Arikawa: "Towards a mathematical theory of machine discovery from facts" Theoretical Computer Science. 137. 53-84 (1995)
Y.Mukouchi 和 Setsuo Arikawa:“从事实中走向机器发现的数学理论”理论计算机科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井佐原 均,石崎 俊: "機械翻訳システム CONTRASTにおける概念表現" 情報処理学会論文誌. 35. 1029-1041 (1994)
Hitoshi Isahara、Shun Ishizaki:“机器翻译系统 CONTRAST 中的概念表示”日本信息处理学会杂志 35. 1029-1041 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Furukawa D.Michie S.Muggleton: OXFORD UNIVERSITY PRESS. MACHINE INTELLIGENCE 13, 1-478 (1994)
K.Furukawa D.Michie S.Muggleton:牛津大学出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FURUKAWA Kouichi其他文献
FURUKAWA Kouichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FURUKAWA Kouichi', 18)}}的其他基金
Mechanisms for the biosignal regulation with glycosphingolipids and their redundancy
鞘糖脂生物信号调节机制及其冗余
- 批准号:
16390075 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of Capital Markets and Envestmentusing engineering approach
使用工程方法分析资本市场和投资
- 批准号:
05451162 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
HCC: Medium: Optimizing Interactive Machine Learning Tools to Support Plant Scientists using Human Centered Design
HCC:中:优化交互式机器学习工具以支持植物科学家使用以人为本的设计
- 批准号:
2312643 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
- 批准号:
NE/Y003519/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
NSFDEB-NERC: Machine learning tools to discover balancing selection in genomes from spatial and temporal autocorrelations
NSFDEB-NERC:机器学习工具,用于从空间和时间自相关中发现基因组中的平衡选择
- 批准号:
2302258 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Development of Novel Domain-Tailored Machine Learning Tools for Organic Reaction Development and Discovery
职业:开发用于有机反应开发和发现的新型领域定制机器学习工具
- 批准号:
2144153 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant