Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
基本信息
- 批准号:RGPIN-2021-02625
- 负责人:
- 金额:$ 3.35万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Human-computer interfaces and human-robot interfaces are everywhere, ranging from smart-phones to intelligent cars to exoskeletons to myoelectric interfaces. As these interfaces become more sophisticated, it becomes harder for engineers to match the tunable parameters of the interface to the complex goals, rewards, and dynamics of humans-particularly for stochastic (noise-corrupted) interfaces. Recent advances in human-movement theory have produced simple causal mappings between input parameters (like motion and force) and the things people care about (like accuracy, effort, and responsiveness). Existing human-machine interface designs typically only focus on one aspect (such as maximizing accuracy) and do not leverage our understanding of these dynamical mappings to maximize the rewards that end-users value. My long-term objective is to flip the paradigm of human-machine interface design, such that engineers use these dynamical mappings to form a bridge between what end-users care about and the parameters that engineers can tune. My short-term objectives are: 1.Develop models that are causal, efficient, human-like, and incorporate human-machine interface uncertainty caused by signal corruption. We will merge advances across branches of the field of computational motor control using numerically efficient methods. 2.Refine computational motor control experiments. Our preliminary work suggests that some conventional methods result in bias due to subconscious user adaptation, which can be mitigated by refining experimental techniques and using random-process analytical techniques. 3.Develop a platform that enables personalized tuning of human-machine interfaces. We will develop numerically efficient techniques that find optimal mappings for given rewards, allowing the user to safely adjust parameters in real-time by articulating their relative reward preferences. 4.Extend our approach to tasks with long-term goals, such as coaching. Similar to how chess algorithms look far enough ahead to win a game, we will use recent advances that implicitly factor in potential learning gains when choosing training actions. This approach will enable coaches to choose training actions that are tailored to the long-term dynamics and implicit goals of individuals. Each of our aims will be validated across experiments comparing our solutions to conventional techniques, using appropriate statistical design and considering EDI factors. This broad program leverages human movement science to inform the optimal design of devices that interact with humans. It represents a highly original paradigm shift in how we think about design that will contribute to groundbreaking advances in several fields including smartphones, human-robot interfaces, and assistive/augmenting devices such as exoskeletons, and lead to concrete technologies that address the critical socio-economic need to harmonize the sophistication of devices with the complex goals of individuals.
人机界面和人机界面无处不在,从智能手机到智能汽车,从外骨骼到肌电界面。随着这些界面变得越来越复杂,工程师将界面的可调参数与人类的复杂目标、奖励和动态相匹配变得更加困难,特别是对于随机(噪声破坏)界面。人体运动理论的最新进展在输入参数(如运动和力)与人们关心的事物(如准确性、努力和响应能力)之间产生了简单的因果映射。现有的人机界面设计通常只关注一方面(例如最大化准确性),并且没有利用我们对这些动态映射的理解来最大化最终用户所看重的奖励。 我的长期目标是颠覆人机界面设计的范式,以便工程师使用这些动态映射在最终用户关心的内容和工程师可以调整的参数之间架起一座桥梁。我的短期目标是: 1.开发因果性、高效、类人的模型,并纳入信号损坏引起的人机界面不确定性。我们将使用高效的数值方法融合计算运动控制领域各个分支的进步。 2.完善计算电机控制实验。我们的初步工作表明,一些传统方法会因用户潜意识适应而产生偏差,这可以通过改进实验技术和使用随机过程分析技术来减轻。 3.开发一个能够实现人机界面个性化调整的平台。我们将开发数字有效的技术,找到给定奖励的最佳映射,允许用户通过阐明他们的相对奖励偏好来安全地实时调整参数。 4.将我们的方法扩展到具有长期目标的任务,例如辅导。与国际象棋算法如何前瞻性地赢得比赛类似,我们将利用最新的进展,在选择训练动作时隐式地考虑潜在的学习收益。这种方法将使教练能够选择适合个人长期动态和隐含目标的训练行动。我们的每个目标都将通过实验进行验证,将我们的解决方案与传统技术进行比较,使用适当的统计设计并考虑 EDI 因素。这个广泛的计划利用人体运动科学来为与人类交互的设备的最佳设计提供信息。它代表了我们对设计的思考方式的高度原创范式转变,这将有助于智能手机、人机界面和外骨骼等辅助/增强设备等多个领域的突破性进步,并带来解决关键社会问题的具体技术。协调设备的复杂性与个人的复杂目标的经济需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sensinger, Jonathon其他文献
Use of two-axis joystick for control of externally powered shoulder disarticulation prostheses.
使用两轴操纵杆控制外部动力肩关节离断假肢。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Lipschutz, Robert D;Lock, Blair;Sensinger, Jonathon;Schultz, Aimee E;Kuiken, Todd A - 通讯作者:
Kuiken, Todd A
Sensinger, Jonathon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sensinger, Jonathon', 18)}}的其他基金
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2020
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2019
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Exploration of optimal prosthesis feedback information using computational motor control
使用计算运动控制探索最佳假肢反馈信息
- 批准号:
RGPIN-2014-06464 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
随机阻尼波动方程的高效保结构算法研究
- 批准号:12301518
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
弱耗散随机动力系统的平均原理
- 批准号:12371188
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
期望有偏的分布式随机训练算法研究
- 批准号:62376278
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
随机干扰作用下轮毂电机驱动电动汽车悬架系统有限时间稳定与容错控制
- 批准号:62363013
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
数据-机理-知识融合的随机场景电网前瞻调度智能决策研究
- 批准号:52377092
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Using stochastic optimal feedback control and computational motor control to design personalized and adaptive human robot interfaces
使用随机最优反馈控制和计算电机控制来设计个性化和自适应人类机器人界面
- 批准号:
RGPIN-2021-02625 - 财政年份:2021
- 资助金额:
$ 3.35万 - 项目类别:
Discovery Grants Program - Individual
Optimal Control of Factor Investing Strategies Using Stochastic Portfolio Theory
利用随机投资组合理论优化因子投资策略控制
- 批准号:
504685-2017 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Optimal Control of Factor Investing Strategies Using Stochastic Portfolio Theory
利用随机投资组合理论优化因子投资策略控制
- 批准号:
504685-2017 - 财政年份:2018
- 资助金额:
$ 3.35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Optimal Control of Factor Investing Strategies Using Stochastic Portfolio Theory
利用随机投资组合理论优化因子投资策略控制
- 批准号:
504685-2017 - 财政年份:2017
- 资助金额:
$ 3.35万 - 项目类别:
Postgraduate Scholarships - Doctoral