A Study on Nonlinear Free Surface Flows around a Submerged High Speed Foil

水下高速水翼周围非线性自由表面流研究

基本信息

项目摘要

Through the present cooperative research, following fidings can be mentioned.1. A new finite difference method such as an artificial third order difference, a numerical wave absorber and a composite grid system are newly introduced for the free surface flow computations. The application showed that the method was much better both in accuracy and in efficiency. A method applicable to the wave breaking phenomena is also developed to simulate breaking waves of a progressive wave and around bow of piercing bodies. Some data were compared with the experimets.2.An improvement for the Rankine source method is introduced where an optimized basic flow is used. The method is applied to simulate the flow around a tandem hlydrofoil to find the optimum arrangement.3.Strong nonlinear phenomena such as wave/wake interaction and spray around a planing plate are studied to make clear the phenomena.4.A new wave hieght measurement method is developed where an image processing techniques are used. The visualization is carried out by illuminating the water/air boundaries. Because the method is a non-contact type, it can be positively used for the studies on a strongly nonlinear free-surafce flow where even a tatch changes the flow.
通过当前的合作研究,可以提及fid。新介绍了一种新的有限差异方法,例如人工三阶差异,数值波吸收器和复合网格系统,用于自由表面流量计算。该应用程序表明,该方法在准确性和效率方面都要好得多。还开发了一种适用于波浪破裂现象的方法,以模拟渐进波和穿孔体的弓的破裂波。将一些数据与实验进行了比较。2。在使用优化的基本流量的情况下,引入了Rankine源方法的改进。该方法用于模拟串联铁丝面条周围的流动以找到最佳排列。3.Strong非线性现象(例如波/唤醒相互作用),并研究了在刨床周围喷洒,以清除现象。可视化是通过照亮水/空气边界来进行的。由于该方法是一种非接触型类型,因此可以将其积极地用于强烈非线性自由式流动流的研究,即使是污染的流动也会改变流量。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Claudio M.P.Sampaio: "Computation of Norlinear Free Surface around Simple Bow Shape" Proc.Send Symposium on Nonlinear and Free Surface Flows. 56-59 (1993)
Claudio M.P.Sampaio:“简单弓形状周围的非线性自由表面的计算”Proc.Send 非线性和自由表面流研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
朴 鍾千: "有限差分法による2次元及び3次元波崩れの数値シミュレーション" 日本造船学会論文集. 175. (1994)
Jong-cheon Park:“使用有限差分法对二维和三维波浪塌陷进行数值模拟”,日本造船学会汇刊 175。(1994)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
片岡克己: "3次元タンデム水中翼の性能について" 西部造船会々報. 86. 13-26 (1993)
Katsumi Kataoka:“关于三维串联水翼的性能”西方造船协会通报 86. 13-26 (1993)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Adrian Lurgu: "A study on Numerical Schemes for More Accurate and Efficient Comutations of Freesurface Flows by Finite Difference Method" Jour.of Soc.of Naval Arch.of Japan. Vol.173. 9-17 (1993)
Adrian Lurgu:“通过有限差分法对自由表面流进行更准确和高效换算的数值方案的研究”Jour.of Soc.of Naval Arch.of Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hisashi Kajitani: "On Water-Wake Interaction Neav a Ship Stem" Proc. 9th Wabshop on Water Waves and Flooting Bodies. (1994)
Hisashi Kajitani:“On Water-Wake Interaction Neav a Ship Stem”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
共 19 条
  • 1
  • 2
  • 3
  • 4
前往

MORI Kazu-hiro的其他基金

Hydrodynamic analysis of nonlinear waves for assessment of coastal ecosystems
用于评估沿海生态系统的非线性波浪水动力分析
  • 批准号:
    10450385
    10450385
  • 财政年份:
    1998
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Turbulence on the Liquid-gas Interface and Wave Breaking
液-气界面上的湍流和波浪破碎
  • 批准号:
    08455473
    08455473
  • 财政年份:
    1996
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
    Grant-in-Aid for Scientific Research (B)
Study on the wave phenomena of a submerged wing which produces downward lifting force
水下翼产生向下升力的波浪现象研究
  • 批准号:
    06452350
    06452350
  • 财政年份:
    1994
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
    Grant-in-Aid for General Scientific Research (B)
Study on a High Speed Semi-Submersible Ship.
高速半潜船研究。
  • 批准号:
    01460168
    01460168
  • 财政年份:
    1989
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
    Grant-in-Aid for General Scientific Research (B)
Development of Three Dimensional Velocity Measurement System by Making Use of Flow Visualization and Numerical Techniques
利用流动可视化和数值技术开发三维速度测量系统
  • 批准号:
    63850098
    63850098
  • 财政年份:
    1988
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
    Grant-in-Aid for Developmental Scientific Research
Numerical methods for problems in marine hydrodynamics
海洋流体动力学问题的数值方法
  • 批准号:
    60302055
    60302055
  • 财政年份:
    1985
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
    Grant-in-Aid for Co-operative Research (A)

相似国自然基金

模拟不同复位法对骨质疏松性胸腰椎压缩骨折椎体高度恢复与脊柱力学稳定作用差异性的有限元分析
  • 批准号:
    81760873
  • 批准年份:
    2017
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
定点旋转复位与斜扳手法对腰4/5椎间盘不同分区突出的作用差异的有限元分析
  • 批准号:
    81360552
  • 批准年份:
    2013
  • 资助金额:
    40.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of High-Performance Finite-Difference Based Computational Models for Electromagnetic Field Assessment
开发基于有限差分的高性能电磁场评估计算模型
  • 批准号:
    568474-2022
    568474-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Postdoctoral Fellowships
    Postdoctoral Fellowships
Slender body theory and finite difference computations to characterize particle-fluid interactions at moderate Reynolds numbers
细长体理论和有限差分计算来表征中等雷诺数下的颗粒-流体相互作用
  • 批准号:
    2206851
    2206851
  • 财政年份:
    2022
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Standard Grant
    Standard Grant
NSF-CBMS Regional Research Conference, Nonstandard Finite Difference Methods: Advances in Theory and Applications
NSF-CBMS 区域研究会议,非标准有限差分方法:理论与应用进展
  • 批准号:
    1933548
    1933548
  • 财政年份:
    2020
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Standard Grant
    Standard Grant
Octree-Based Finite Difference Methods for Efficient Fluid Animation
基于八叉树的高效流体动画有限差分方法
  • 批准号:
    544837-2019
    544837-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    University Undergraduate Student Research Awards
    University Undergraduate Student Research Awards
Novel High Order Accurate Finite Difference Schemes Constructed via Superconvergence of Finite Element Methods
有限元超收敛构造的新型高阶精确有限差分格式
  • 批准号:
    1913120
    1913120
  • 财政年份:
    2019
  • 资助金额:
    $ 5.89万
    $ 5.89万
  • 项目类别:
    Standard Grant
    Standard Grant