Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering

工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台

基本信息

  • 批准号:
    RGPIN-2020-06497
  • 负责人:
  • 金额:
    $ 2.77万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The primary goal of this proposal is to develop a new class of biomaterials using engineered mineral nanoparticles to obtain three-dimensional (3D) complex structures consisting of cells and matrices using bioprinting technology. In the long-term, I intend to utilize mineral-based biomaterials as a platform technology to fabricate cell-instructive scaffolds with user-defined structures for advanced tissue engineering. However, without understanding how different minerals (e.g. calcium, magnesium, silicon, zinc, copper) regulate cellular activities, it is impossible to develop effective mineral-based biomaterials. A systematic investigation of the interactions between cell-cell, cell-nanoparticles, cell-matrix will lead us to the overarching goal. In the short term (next 5 years), I propose following three objectives that fit into the long-term goal: 1) To design mineral-based nanoparticles and elucidate their individual and synergistic effects on cellular behavior via combinatorial screening. This will provide new insight in deciphering the mechanisms by which mineral nanoparticles interact with the cells (male and female origin). We will identify new bioactive nanoparticle formulations that can effectively control cell behavior, without using any other stimulants. To our knowledge no other investigation has tailored nanoparticle compositions to engineer cell fate. 2) To develop 3D printable hydrogels using mineral nanoparticles with tailored cell-instructive properties. This objective will reveal the type of interactions between mineral nanoparticles, polymeric hydrogels and human cells, and create mechanically resilient, 3D-printable, bioresponsive hydrogels. This objective will also promote the field's understanding on how to leverage non-covalent interactions to mechanically reinforce weak polymeric networks and form tough, injectable, self-healing hydrogels. 3) To determine the ability of the printable hydrogels to bioprint complex tissue structures and direct cellular behavior. Utility of conventional hydrogel bioinks to print functional tissues and control cell fate is severely constrained by their suboptimal mechanical properties and limited bioactivity. To overcome these challenges, mineral-based hydrogel bioinks with tunable biological and mechanical properties will be used to engineer tissue constructs with high structural stability and precise spatio-temporal control over cell fate. Upon completion, this research will have broad scientific, engineering and technological impacts on the end-users (e.g. biofabrication and biomanufacturing industries) with potential to transform bioactive materials development, 3D printing and tissue engineering. HQP supported by this grant will receive state-of-the-art experiential training in nanomaterials, polymer science, stem cell biology and bioprinting technologies. HQP trained in these interdisciplinary technologies are highly sought in academic and industrial R&D sectors across Canada.
该提案的主要目标是开发一类新型生物材料,使用工程矿物纳米粒子,利用生物打印技术获得由细胞和基质组成的三维 (3D) 复杂结构。从长远来看,我打算利用矿物生物材料作为平台技术来制造具有用户定义结构的细胞指导支架,用于先进的组织工程。然而,如果不了解不同矿物质(例如钙、镁、硅、锌、铜)如何调节细胞活动,就不可能开发出有效的矿物质生物材料。对细胞与细胞、细胞与纳米颗粒、细胞与基质之间相互作用的系统研究将引导我们实现总体目标。在短期内(未来5年),我建议遵循以下三个与长期目标相符的目标:1)设计基于矿物的纳米颗粒,并通过组合筛选阐明它们对细胞行为的个体和协同效应。这将为破译矿物纳米颗粒与细胞(男性和女性起源)相互作用的机制提供新的见解。我们将确定新的生物活性纳米颗粒配方,可以有效控制细胞行为,而无需使用任何其他兴奋剂。据我们所知,没有其他研究能够定制纳米颗粒组合物来改变细胞命运。 2) 使用具有定制细胞指导特性的矿物纳米颗粒开发可 3D 打印的水凝胶。该目标将揭示矿物纳米颗粒、聚合物水凝胶和人体细胞之间相互作用的类型,并创建机械弹性、可 3D 打印的生物响应性水凝胶。这一目标还将促进该领域对如何利用非共价相互作用来机械强化弱聚合物网络并形成坚韧、可注射、自修复水凝胶的理解。 3)确定可打印水凝胶生物打印复杂组织结构和指导细胞行为的能力。传统水凝胶生物墨水在打印功能组织和控制细胞命运方面的用途受到其次优机械性能和有限生物活性的严重限制。为了克服这些挑战,具有可调节生物和机械性能的矿物水凝胶生物墨水将用于设计具有高结构稳定性和对细胞命运的精确时空控制的组织结构。 完成后,这项研究将对最终用户(例如生物制造和生物制造行业)产生广泛的科学、工程和技术影响,并有可能改变生物活性材料的开发、3D 打印和组织工程。受这笔赠款支持的 HQP 将接受纳米材料、聚合物科学、干细胞生物学和生物打印技术方面最先进的体验式培训。受过这些跨学科技术培训的 HQP 在加拿大学术和工业研发领域备受追捧。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul, Arghya其他文献

Development of MicroRNA-146a-Enriched Stem Cell Secretome for Wound-Healing Applications.
开发富含 MicroRNA-146a 的干细胞分泌组用于伤口愈合应用。
  • DOI:
  • 发表时间:
    2019-10-07
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Waters, Renae;Subham, Siddharth;Pacelli, Settimio;Modaresi, Saman;Chakravarti, Aparna R;Paul, Arghya
  • 通讯作者:
    Paul, Arghya
Nucleic Acid-Based Dual Cross-Linked Hydrogels for in Situ Tissue Repair via Directional Stem Cell Migration.
基于核酸的双交联水凝胶,通过定向干细胞迁移进行原位组织修复。
  • DOI:
  • 发表时间:
    2019-09-25
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Basu, Sayantani;Alkiswani, Abdul;Pacelli, Settimio;Paul, Arghya
  • 通讯作者:
    Paul, Arghya
Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair.
用于血管生成和心脏修复的可注射氧化石墨烯/水凝胶血管生成基因递送系统。
  • DOI:
  • 发表时间:
    2014-08-26
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Paul, Arghya;Hasan, Anwarul;Kindi, Hamood Al;Gaharwar, Akhilesh K;Rao, Vijayaraghava T S;Nikkhah, Mehdi;Shin, Su Ryon;Krafft, Dorothee;Dokmeci, Mehmet R;Shum;Khademhosseini, Ali
  • 通讯作者:
    Khademhosseini, Ali
Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization
  • DOI:
    10.1038/srep02366
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Paul, Arghya;Elias, Cynthia B.;Shum-Tim, Dominique;Prakash, Satya
  • 通讯作者:
    Prakash, Satya
Investigation of siRNA-Loaded Polyethylenimine-Coated Human Serum Albumin Nanoparticle Complexes for the Treatment of Breast Cancer
  • DOI:
    10.1007/s12013-011-9201-9
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Abbasi, Sana;Paul, Arghya;Prakash, Satya
  • 通讯作者:
    Prakash, Satya

Paul, Arghya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul, Arghya', 18)}}的其他基金

Advanced Cell-instructive Materials and Biotherapeutics
先进的细胞指导材料和生物治疗学
  • 批准号:
    CRC-2018-00028
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Advanced Cell-instructive Materials and Biotherapeutics
先进的细胞指导材料和生物治疗学
  • 批准号:
    CRC-2018-00028
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Advanced Cell-Instructive Materials And Biotherapeutics
先进的细胞指导材料和生物治疗
  • 批准号:
    CRC-2018-00028
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPIN-2020-06497
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Advanced Cell-Instructive Materials And Biotherapeutics
先进的细胞指导材料和生物治疗
  • 批准号:
    CRC-2018-00028
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Canada Research Chairs
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPIN-2020-06497
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

含铁矿物介导氟喹诺酮类新污染物腐殖化聚合转化过程与调控机制
  • 批准号:
    42377390
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
夏日哈木矿床硫化物熔离-演化过程研究:来自贱金属矿物微量元素和多硫同位素的约束
  • 批准号:
    42302078
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
再生固碳胶凝材料矿物活性提升及多晶型碳化产物形成机制
  • 批准号:
    52378229
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
地下水Ca(II)促进施氏矿物相变及除砷的作用机制
  • 批准号:
    42377248
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
微区分析高质量常用副矿物U-Pb年代学巨晶标样以及高精准激光微区定年方法研发
  • 批准号:
    42330104
  • 批准年份:
    2023
  • 资助金额:
    229 万元
  • 项目类别:
    重点项目

相似海外基金

Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPIN-2020-06497
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Individual
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Engineered Mineral Nanoparticles and Nanocomposites: A Versatile Multifunctional Platform for 3D Bioprinting and Tissue Engineering
工程矿物纳米颗粒和纳米复合材料:用于 3D 生物打印和组织工程的多功能平台
  • 批准号:
    RGPAS-2020-00120
  • 财政年份:
    2021
  • 资助金额:
    $ 2.77万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了