Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
基本信息
- 批准号:RGPIN-2021-02645
- 负责人:
- 金额:$ 2.33万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dual aerial/aquatic (DA2) vehicles that allow fast aerial travel interspersed with underwater exploration are envisioned as the best candidate for many oceanic missions, such as water quality sampling, search and rescue, and ocean territory infiltration. Developing such a system can significantly advance Canadian global competitiveness in the future ocean or inland water exploration and exploitation. One of the key obstacles is to design a propulsion system that can work optimally in both air and water. While it is challenging to use traditional propulsor to achieve this mission, nature has provided its own solution of a morphing flapping wing/foil, seen in seabirds. To create and control a morphing flapping actuator for viable DA2 vehicle designs, technologically, apart from 1) an understanding of the vortical flow around flapping foils, it also requires 2) a learning strategy to quickly solve problems with a large number of variables in an uncertain environment, 3) a design and fabrication toolkit for multi-functional and robust smart morphing structures. Therefore, we propose two key tasks to address the aforementioned requirements. The first task is to develop a physics-informed (and -informative) reinforcement learning (Phi2RL) framework for the flapping foil capable of using sparsely distributed pressure sensors to sense the near-body wake and swiftly performing trajectory planning in a turbulent/gusty environment. The Phi2RL includes 1) a system dynamics model that contains both the physics-embedded-as-structure reduced-order model as well as the learning flexibility of the data-assisted component to compensate the unmodeled dynamics, and 2) practical reinforcement learning and transfer learning algorithms to explore and exploit the optimal force (lift and thrust) profile generation in real-time. The second task is to use discrete cellular metamaterial and carbon-black-polydimethylsiloxane (CB-PDMS) to design a smart morphing flapping actuator with a skin of soft pressure sensor arrays that is capable of adaptively alternating wing shapes, areas, and flapping kinematics. The proposed research will provide tremendous insights into a viable propulsion solution for a DA2 vehicle in the future. Additionally, the Phi2RL will be a powerful artificial intelligence (AI)-enhanced fluid experiment solution that can be generalized to address a variety of fluid problems at a broader scope and greater scale, such as drag reduction of streamline and bluff bodies. Furthermore, HQPs, including 2 Ph.D., 3 MSc, and 1 undergraduate, will work collaboratively on this multi-disciplinary project. They will learn knowledge on unsteady aerodynamics/hydrodynamics, reduced-order modeling, experimental testing, AI algorithms, sparse sensing, and digital fabrications and will acquire strong communication and teamwork skills, which transfers them to be successful scientists and engineers contributing to the Canadian academia and industry.
双空中/水上(DA2)飞行器允许快速空中旅行并穿插水下探索,被认为是许多海洋任务的最佳选择,例如水质采样、搜索和救援以及海洋领土渗透。开发这样的系统可以显着提高加拿大在未来海洋或内陆水域勘探和开发方面的全球竞争力。关键障碍之一是设计一种能够在空气和水中最佳工作的推进系统。虽然使用传统推进器来实现这一任务具有挑战性,但大自然提供了自己的解决方案,即海鸟身上看到的变形扑翼/水翼。为了创建和控制可行的 DA2 飞行器设计的变形扑动执行器,从技术上来说,除了 1) 了解扑动翼片周围的涡流之外,还需要 2) 一种学习策略来快速解决具有大量变量的问题。不确定的环境,3)用于多功能和稳健的智能变形结构的设计和制造工具包。因此,我们提出两项关键任务来满足上述要求。第一个任务是为扑动箔开发一个基于物理的(和信息性的)强化学习(Phi2RL)框架,能够使用稀疏分布的压力传感器来感知近体尾流,并在湍流/阵风环境中快速执行轨迹规划。 Phi2RL 包括 1) 系统动力学模型,其中包含物理嵌入结构降阶模型以及数据辅助组件的学习灵活性,以补偿未建模的动态;2) 实用的强化学习和迁移学习算法来实时探索和利用最佳力(升力和推力)曲线生成。第二项任务是使用离散细胞超材料和炭黑聚二甲基硅氧烷(CB-PDMS)设计一种智能变形扑动致动器,其表皮由软压力传感器阵列组成,能够自适应地改变机翼形状、面积和扑动运动学。拟议的研究将为 DA2 车辆未来的可行推进解决方案提供深刻见解。此外,Phi2RL 将是一种强大的人工智能 (AI) 增强型流体实验解决方案,可推广到更广泛范围和更大范围内解决各种流体问题,例如流线型和钝体的减阻。此外,包括 2 名博士、3 名硕士和 1 名本科生在内的 HQP 将在这个多学科项目上进行合作。他们将学习非定常空气动力学/流体动力学、降阶建模、实验测试、人工智能算法、稀疏传感和数字制造方面的知识,并将获得强大的沟通和团队合作技能,这将使他们成为为加拿大学术界做出贡献的成功科学家和工程师和工业。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fan, Dixia其他文献
NUMERICAL SIMULATION OF CAVITATION PHENOMENA IN DIESEL INJECTOR NOZZLES (The 16th Conference of ILASS-Asia)
柴油机喷油嘴空化现象的数值模拟(第16届ILASS-Asia会议)
- DOI:
10.1016/j.ultsonch.2022.106035 - 发表时间:
2022-05 - 期刊:
- 影响因子:8.4
- 作者:
Ge, Mingming;Sun, Chuanyu;Zhang, Guangjian;Coutier-Delgosha, Olivier;Fan, Dixia - 通讯作者:
Fan, Dixia
Modular Morphing Lattices for Large-Scale Underwater Continuum Robotic Structures
用于大型水下连续体机器人结构的模块化变形晶格
- DOI:
10.1089/soro.2022.0117 - 发表时间:
2023-08 - 期刊:
- 影响因子:7.9
- 作者:
Rubio, Alfonso Parra;Fan, Dixia;Jenett, Benjamin;Ferrandis, Jose del Aguila;Tourlomousis, Filippos;Abdel-Rahman, Amira;Preiss, David;Zemanek, Jiri;Triantafyllou, Michael;Gershenfeld, Neil - 通讯作者:
Gershenfeld, Neil
Fan, Dixia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fan, Dixia', 18)}}的其他基金
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
- 批准号:
DGECR-2021-00087 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
Physics-Informed (and -informative) Reinforcement Learning and Bio-Inspired Design of a Smart Morphing Flapping Wing for Dual Aerial/Aquatic Propulsion and Maneuvering
用于双空中/水中推进和操纵的智能变形扑翼的物理信息(和信息)强化学习和仿生设计
- 批准号:
DGECR-2021-00087 - 财政年份:2021
- 资助金额:
$ 2.33万 - 项目类别:
Discovery Launch Supplement
相似海外基金
MEtaGenome-informed Antimicrobial resistance Surveillance: Harnessing long-read sequencing for an analytical, indicator and risk assessment framework
基于 MEtaGenome 的抗菌药物耐药性监测:利用长读长测序构建分析、指标和风险评估框架
- 批准号:
MR/Y034457/1 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Research Grant
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
IP23-006 VIMP: A Discourse-Aware, Community-Informed Toolkit to Predict Virality and Impact of Vaccine Misinformation Contents
IP23-006 VIMP:一个具有话语感知、社区知情的工具包,用于预测疫苗错误信息内容的病毒性和影响
- 批准号:
10762193 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant
CAREER: Advanced and Uncertainty-Informed Site Investigation
职业:高级和不确定性现场调查
- 批准号:
2340596 - 财政年份:2024
- 资助金额:
$ 2.33万 - 项目类别:
Standard Grant