Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
基本信息
- 批准号:RGPIN-2019-06636
- 负责人:
- 金额:$ 1.62万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum computing is dramatically impacting our understanding of the possibilities and limits of information processing. Computing machines taking advantage of the counter-intuitive quantum effects of Nature will be able to perform certain tasks much faster than any computer based only on classical principles, such as simulating quantum physics, searching large databases, or breaking widely used cryptographic codes. One of the most intriguing aspects of quantum information processing is the physical phenomenon known "quantum entanglement," which is a type of correlation between two distant particles that cannot be explained classically. Although entanglement began as a philosophical curiosity within quantum physics, these "spooky" correlations have been recognized as an important resource for a variety of information processing tasks. For example, quantum entanglement is a crucial ingredient in protocols for classically testing random number generation --- a task not possible in the classical world. A primary lesson learned over the past two decades is that high entanglement complexity is a general feature of quantum states. Today, the frontier challenge in quantum information theory is understanding the robustness of such complex entanglement. So far, much of our understanding of the complexity of entanglement pertains to highly idealized settings: for example, the states of an error-free quantum computer, or physical systems at extremely low temperature, are expected to defy efficient classical simulation. But what about noisy quantum computing devices, or physical systems at room temperature? Can complex entanglement persist in these settings? The overarching goal of this research proposal is to address this important theme about the robustness of complex entanglement. I propose a research program that pursues two main directions, exemplified by the following questions: (a) Can complex entanglement be classically certified in a noise-tolerant manner? and (b) What is the computational complexity of quantum correlations? Developing a deeper understanding of the robustness of entanglement has significant theoretical as well as practical motivation. On the theoretical side, studying the questions above will likely involve using concepts and techniques from cryptography, condensed matter physics, complexity theory, and more. The answers will enrich our understanding of the computational and information-theoretic aspects of quantum entanglement in a variety of settings. On the practical side, studying robustness of entanglement is a timely topic as we enter the "Noisy Intermediate-Scale Quantum" era, where companies such as Google and IBM are on the verge of constructing quantum computers with a few hundred noisy qubits. There is a a demand for rigorous methods for testing noisy quantum devices, and furthermore, demonstrating that such devices are capable of performing computations that exceed the capabilities of classical computers.
量子计算极大地影响了我们对信息处理的可能性和局限性的理解。利用自然界反直觉量子效应的计算机将能够比任何仅基于经典原理的计算机更快地执行某些任务,例如模拟量子物理、搜索大型数据库或破解广泛使用的密码。 量子信息处理最有趣的方面之一是被称为“量子纠缠”的物理现象,它是两个遥远粒子之间的一种无法用经典解释的相关性。尽管纠缠最初是量子物理学中的一种哲学好奇心,但这些“怪异”的相关性已被认为是各种信息处理任务的重要资源。例如,量子纠缠是经典测试随机数生成协议中的关键要素——这在经典世界中是不可能完成的任务。过去二十年学到的一个主要教训是,高纠缠复杂性是量子态的普遍特征。如今,量子信息理论的前沿挑战是理解这种复杂纠缠的鲁棒性。到目前为止,我们对纠缠复杂性的大部分理解都涉及高度理想化的设置:例如,无差错量子计算机的状态或极低温度下的物理系统预计无法进行有效的经典模拟。但是嘈杂的量子计算设备或室温下的物理系统又如何呢?在这些环境中复杂的纠缠能够持续存在吗? 这项研究计划的总体目标是解决有关复杂纠缠稳健性的重要主题。我提出了一个研究计划,该计划追求两个主要方向,例如以下问题:(a)复杂的纠缠可以以耐噪声的方式进行经典认证吗? (b) 量子关联的计算复杂度是多少? 深入了解纠缠的鲁棒性具有重要的理论和实践动机。在理论方面,研究上述问题可能涉及使用密码学、凝聚态物理、复杂性理论等的概念和技术。这些答案将丰富我们对各种环境下量子纠缠的计算和信息论方面的理解。在实践方面,随着我们进入“嘈杂的中尺度量子”时代,研究纠缠的鲁棒性是一个及时的话题,谷歌和IBM等公司即将构建具有数百个噪声量子位的量子计算机。需要严格的方法来测试噪声量子设备,并且证明此类设备能够执行超出经典计算机能力的计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuen, Henry其他文献
Unitary Property Testing Lower Bounds by Polynomials
通过多项式测试单一属性下界
- DOI:
10.4230/lipics.itcs.2023.96 - 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
She, Adrian;Yuen, Henry - 通讯作者:
Yuen, Henry
Parallel Repetition via Fortification: Analytic View and The Quantum Case
通过强化的并行重复:分析视图和量子案例
- DOI:
- 发表时间:
2017-01 - 期刊:
- 影响因子:0
- 作者:
Bavarian, Mohammad;Vidick, Thomas;Yuen, Henry - 通讯作者:
Yuen, Henry
Testing and Learning Quantum Juntas Nearly Optimally
近乎最佳地测试和学习量子 Junta
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Chen, Thomas;Nadimpali, Shivam;Yuen, Henry - 通讯作者:
Yuen, Henry
Testing and Learning Quantum Juntas Nearly Optimally
近乎最佳地测试和学习量子 Junta
- DOI:
- 发表时间:
2023-05 - 期刊:
- 影响因子:0
- 作者:
Chen, Thomas;Nadimpalli, Shivam;Yuen, Henry - 通讯作者:
Yuen, Henry
Testing and Learning Quantum Juntas Nearly Optimally
近乎最佳地测试和学习量子 Junta
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Chen, Thomas;Nadimpali, Shivam;Yuen, Henry - 通讯作者:
Yuen, Henry
Yuen, Henry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuen, Henry', 18)}}的其他基金
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
DGECR-2019-00470 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Launch Supplement
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
DGECR-2019-00470 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Launch Supplement
相似国自然基金
基于量子优化框架的海洋传感网鲁棒性定位与追踪研究
- 批准号:52201401
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子调控理论设计宽频、鲁棒性优异的太赫兹集成定向耦合器的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:
复杂量子系统辨识及其最优性和鲁棒性
- 批准号:
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
全光纤高鲁棒性的光频梳高精度频率传递方法的研究
- 批准号:61901046
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
几何量子计算鲁棒性的增强
- 批准号:11947221
- 批准年份:2019
- 资助金额:18 万元
- 项目类别:专项基金项目
相似海外基金
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2020
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
RGPIN-2019-06636 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Grants Program - Individual
Complexity and Robustness of Quantum Entanglement
量子纠缠的复杂性和鲁棒性
- 批准号:
DGECR-2019-00470 - 财政年份:2019
- 资助金额:
$ 1.62万 - 项目类别:
Discovery Launch Supplement