Using real-time, continuous, and high-frequency water quality data to develop early warning systems for water security in the Great Lakes
利用实时、连续、高频的水质数据开发五大湖水安全预警系统
基本信息
- 批准号:555656-2020
- 负责人:
- 金额:$ 10.59万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alliance Grants
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmful algal blooms (HABs) are becoming more frequent and severe and are degrading Canada's lakes and rivers. HABs can produce chemicals that are toxic to humans, disrupting drinking water service, limiting recreational use of freshwater ecosystems, and compromising agriculture. These events can threaten the Canadian economy, which depends on clean, safe water. To better manage HABs outbreaks, Canada needs to 1) better understand the underlying factors that lead to outbreaks, 2) develop an early warning system that would help us predict and detect events early and quickly, and 3) create models that allow water utilities to ensure delivery of safe water to the public and agricultural industries. To accomplish these goals, we need a system that collects continuous real-time water quality data. We are proposing to use the Real-time Aquatic Ecosystem Observation Network (RAEON) to deploy real-time buoys and autonomous underwater vehicles that will regularly collect real-time data on nutrients and physical, chemical, and biological criteria in the western basin of Lake Erie. These data will be used to develop early warning indicators and water security models. Land use data, nutrient experiments, hydrologic modeling of water currents, and manual water collections will also be used to provide a comprehensive assessment to expand understanding of HAB dynamics. Biogeochemists, limnologists, engineers, and industry managers will work together on this project and will take a whole-system approach to understand how processes in the lake affect water quality. They will use that knowledge to deliver safe water to users, including the public and industry. Three private partners -- Union Water Supply System, InnovaSea, and Pro-Oceanus -- will help facilitate rapid uptake of methods and models into the water quality community. Environment and Climate Change Canada will participate to support development of management and policy for freshwater ecosystems. In addition, this collaboration includes four universities -- Windsor, Trent, Queen's and Toronto -- and will train 10 students in environmental research and technology.
有害藻华 (HAB) 变得越来越频繁和严重,并正在使加拿大的湖泊和河流退化。 HAB 会产生对人类有毒的化学物质,扰乱饮用水服务,限制淡水生态系统的娱乐用途,并损害农业。这些事件可能会威胁到依赖清洁、安全水的加拿大经济。为了更好地管理 HAB 爆发,加拿大需要 1) 更好地了解导致爆发的根本因素,2) 开发早期预警系统,帮助我们及早、快速地预测和发现事件,3) 创建模型,使水务公司能够确保向公众和农业提供安全用水。为了实现这些目标,我们需要一个能够收集连续实时水质数据的系统。我们建议利用实时水生生态系统观测网络(RAEON)部署实时浮标和自主水下航行器,定期收集湖西部流域的营养物质和物理、化学和生物标准的实时数据伊利。这些数据将用于制定预警指标和水安全模型。土地利用数据、营养物实验、水流水文模型和人工集水也将用于提供全面评估,以扩大对HAB动态的了解。生物地球化学家、湖沼学家、工程师和行业经理将共同致力于该项目,并采用全系统方法来了解湖中的过程如何影响水质。他们将利用这些知识为用户(包括公众和行业)提供安全用水。三个私营合作伙伴——Union Water Supply System、InnovaSea 和 Pro-Oceanus——将帮助促进水质界快速采用方法和模型。加拿大环境与气候变化部将参与支持淡水生态系统管理和政策的制定。此外,此次合作还包括四所大学——温莎大学、特伦特大学、女王大学和多伦多大学——并将培训 10 名环境研究和技术学生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fisk, Aaron其他文献
Fisk, Aaron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fisk, Aaron', 18)}}的其他基金
Changing Great Lakes Ecosystems
改变五大湖生态系统
- 批准号:
CRC-2016-00003 - 财政年份:2022
- 资助金额:
$ 10.59万 - 项目类别:
Canada Research Chairs
Changing Great Lakes Ecosystems
改变五大湖生态系统
- 批准号:
CRC-2016-00003 - 财政年份:2022
- 资助金额:
$ 10.59万 - 项目类别:
Canada Research Chairs
Quantifying spatial subsidies of freshwater fish in large lakes
量化大型湖泊淡水鱼的空间补贴
- 批准号:
RGPIN-2020-05500 - 财政年份:2022
- 资助金额:
$ 10.59万 - 项目类别:
Discovery Grants Program - Individual
Quantifying spatial subsidies of freshwater fish in large lakes
量化大型湖泊淡水鱼的空间补贴
- 批准号:
RGPIN-2020-05500 - 财政年份:2022
- 资助金额:
$ 10.59万 - 项目类别:
Discovery Grants Program - Individual
Changing Great Lakes Ecosystems
改变五大湖生态系统
- 批准号:
CRC-2016-00003 - 财政年份:2021
- 资助金额:
$ 10.59万 - 项目类别:
Canada Research Chairs
Changing Great Lakes Ecosystems
改变五大湖生态系统
- 批准号:
CRC-2016-00003 - 财政年份:2021
- 资助金额:
$ 10.59万 - 项目类别:
Canada Research Chairs
Quantifying spatial subsidies of freshwater fish in large lakes
量化大型湖泊淡水鱼的空间补贴
- 批准号:
RGPIN-2020-05500 - 财政年份:2021
- 资助金额:
$ 10.59万 - 项目类别:
Discovery Grants Program - Individual
Quantifying spatial subsidies of freshwater fish in large lakes
量化大型湖泊淡水鱼的空间补贴
- 批准号:
RGPIN-2020-05500 - 财政年份:2021
- 资助金额:
$ 10.59万 - 项目类别:
Discovery Grants Program - Individual
Using real-time, continuous, and high-frequency water quality data to develop early warning systems for water security in the Great Lakes
利用实时、连续、高频的水质数据开发五大湖水安全预警系统
- 批准号:
555656-2020 - 财政年份:2020
- 资助金额:
$ 10.59万 - 项目类别:
Alliance Grants
Changing Great Lakes Ecosystems
改变五大湖生态系统
- 批准号:
CRC-2016-00003 - 财政年份:2020
- 资助金额:
$ 10.59万 - 项目类别:
Canada Research Chairs
相似国自然基金
己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
- 批准号:31501461
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
- 批准号:31171793
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
多维马氏体的数学建模及其高精度数值模拟方法
- 批准号:11171218
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
- 批准号:81172902
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 10.59万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 10.59万 - 项目类别:
Research Grant
Predicting internal erosion in dams using real-time coupled experiments
使用实时耦合实验预测大坝的内部侵蚀
- 批准号:
DE240100817 - 财政年份:2024
- 资助金额:
$ 10.59万 - 项目类别:
Discovery Early Career Researcher Award
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 10.59万 - 项目类别:
Collaborative R&D
PFI-TT: Enhancing Manufacturing with Real-Time Defect Detection using mm-Wave Antenna Sensors
PFI-TT:使用毫米波天线传感器通过实时缺陷检测增强制造
- 批准号:
2234594 - 财政年份:2023
- 资助金额:
$ 10.59万 - 项目类别:
Standard Grant