Theoretical Study of the Quantum Hall Effect in Systems with Finite Width.

有限宽度系统中量子霍尔效应的理论研究。

基本信息

  • 批准号:
    63540281
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1988
  • 资助国家:
    日本
  • 起止时间:
    1988 至 1989
  • 项目状态:
    已结题

项目摘要

In order to investigate the effect of the finite system size we studied the electronic states and the current distribution in two dimensional disordered electron systems subject to perpendicular strong magnetic fields, by using computer simulations. The main results obtained in this study are as follows.1. There exist continuous transition between the bulk extended states and the edge states. When the bulk and edge states belonging to different Landau subbands are energetically degenerate, their hybridization occurs and its extent depends on the correlation length of impurity potentials.2. The delocalized states have a fractal character and extend with fractal dimensions smaller than two. As the energy decreases from the edge state region to the bulk region, the fractal dimensions vary from the anisotropic to the isotropic one.3. The sum rule about the center of mass of eigenstates, which is intimately related to the quantization of the Hall conductivity, has been confirmed numerically.4. The compensation of the Hall current has been found to be realized not only globally but also locally. Therefore, in the plateau region of the Hall conductivity, the Hall current distribution becomes uniform even in the disordered systems.5. In the region where the Hall conductivity as a function of the filling factor rises up, it shows large fluctuations and we have found large spatial fluctuations in the Hall current distribution.6. It has been found that the current control by the gate barrier is a quite useful technique in studying the current distribution inside the system not only experimentally but also theoretically.The inclusion of the Coulomb interaction has been found to reduce the apparent size effect on the Hall conductivity to some extent. However we could not succeed to clarity the theoretical limit of the accuracy of the Hall conductivity quantization.
为了研究有限系统尺寸的影响,我们通过计算机模拟研究了垂直强磁场作用下二维无序电子系统中的电子态和电流分布。本研究取得的主要结果如下: 1.体扩展态和边缘态之间存在连续的转变。当属于不同Landau子带的体态和边缘态进行能量简并时,它们会发生杂化,其程度取决于杂质势的相关长度。 2.离域态具有分形特征并以小于二的分形维数延伸。随着能量从边缘态区到体态区减小,分形维数从各向异性变为各向同性。 3.与霍尔电导率的量子化密切相关的本征态质心求和法则已得到数值证实。 4.霍尔电流的补偿不仅可以实现全局补偿,还可以实现局部补偿。因此,在霍尔电导率的平台区域,即使在无序系统中,霍尔电流分布也变得均匀。5.在霍尔电导率随填充因子上升的区域中,它表现出较大的波动,我们发现霍尔电流分布存在较大的空间波动。6.人们发现,通过栅极势垒控制电流是一种非常有用的技术,无论是在实验上还是在理论上研究系统内部的电流分布。已发现库仑相互作用的包含可以减少霍尔的表观尺寸效应具有一定的导电性。然而,我们无法成功阐明霍尔电导率量子化精度的理论极限。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. OHTSUKI and Y. ONO: "Potential Range Dependence of Mixing of Edge States in Quantum Hall Effect." J. Phys. Soc. Jpn. 58 3863-3864, 1989.
T. OHTSUKI 和 Y. ONO:“量子霍尔效应中边缘态混合的潜在范围依赖性”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshiyuki ONO: "Inverse Participation Number and Fractal Dimensionality of Electronic States in a Two Dimensional System in Strong Perpendicular Magnetic Field." Journal of Physical Society of Japan. 58. 1705-1716 (1989)
Yoshiyuki ONO:“强垂直磁场中二维系统中电子态的逆参与数和分形维数。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tomi OHTSUKI: "Hall Current Distributions in Quantum Hall Effect on Finite Cylinder Surface" Journal of Physical Society of Japan. 58. 2482-2494 (1989)
Tomi OHTSUKI:“有限圆柱表面量子霍尔效应中的霍尔电流分布”日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. FUKUDA and Y. ONO: "Anisotropic Fractal Dimensionality of Electronic States in Confined Two Dimensional System Subject to Strong Magnetic Field." J. Phys. Soc. Jpn.
S. FUKUDA 和 Y. ONO:“强磁场下受限二维系统中电子态的各向异性分形维数”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshiyuki ONO: Journal of Physical Society of Japan. 58. No.5 (1989)
小野芳之:日本物理学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ONO Yoshiyuki其他文献

ONO Yoshiyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ONO Yoshiyuki', 18)}}的其他基金

LES analysis of the flow around a realistic scale-structure with circular section
具有圆形截面的真实尺度结构周围流动的 LES 分析
  • 批准号:
    19760400
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Peierls Transition and Phonon Softening in 2D Electron-Lattice System
二维电子晶格系统中的 Peierls 跃迁和声子软化
  • 批准号:
    16540329
  • 财政年份:
    2004
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Peierls Transition and Nonlinear Localized Excitations in Two-dimensional Electron-Lattice System
二维电子晶格系统中的 Peierls 跃迁和非线性局域激发
  • 批准号:
    14540365
  • 财政年份:
    2002
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Level Statistics and Anderson Localization in Disordered Electron Systems
无序电子系统中的能级统计和安德森定位
  • 批准号:
    07640520
  • 财政年份:
    1995
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Motion of Nonlinear Excitations in Quasi-One-Dimensional Electron-Phonon Systems
准一维电子声子系统中非线性激励的运动
  • 批准号:
    05640446
  • 财政年份:
    1993
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似国自然基金

汇聚板块边缘铜镍硫化物矿床Co富集机制和赋存状态研究:以中亚造山带克布和哈拉图庙矿床为例
  • 批准号:
    42272088
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
智能电网边缘智能状态监测数据安全研究
  • 批准号:
    62261023
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
面向边缘智能计算的锂离子电池健康状态估计与剩余寿命预测方法研究
  • 批准号:
    52007196
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
南海北部陆缘异常构造沉降形成机制与破裂阶段热状态的数值模拟
  • 批准号:
    41776078
  • 批准年份:
    2017
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目
晚古生代华北地块北缘中地壳热状态及构造变形:对认识安第斯型大陆边缘地壳加厚的意义
  • 批准号:
    41572204
  • 批准年份:
    2015
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目

相似海外基金

MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Fellowship
Interface, Edge and Bulk of Complex States of Matter
复杂物态的界面、边缘和块体
  • 批准号:
    2315954
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Programmable light potentials for studying edge states and quantum thermodynamics
用于研究边缘态和量子热力学的可编程光势
  • 批准号:
    2888599
  • 财政年份:
    2023
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Studentship
Development of high-performance thermoelectric materials using impurity states formed near the band edge
利用能带边缘附近形成的杂质态开发高性能热电材料
  • 批准号:
    21H01628
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cutting-edge Spectral sorter to drive in-depth analysis of cell states and activity in complex tissue environments
尖端的光谱分选仪可推动复杂组织环境中细胞状态和活动的深入分析
  • 批准号:
    BB/V019287/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了