System Dynamics and Control of Deep Drilling Systems

深钻系统的系统动力学和控制

基本信息

  • 批准号:
    RGPIN-2019-04390
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

Accessing resources deep underground remains a challenge across a variety of industries, including oil and gas extraction and harnessing geothermal energy. For oil and gas resources, easy to access reservoirs are already being exploited and newer targets are in ever more challenging environments and formations. Historically, wells drilled to access reservoirs had simple trajectories either vertical or tangent but modern wells increasingly have complex three-dimensional trajectories with high tortuosity, or snaking of the wellpath. To improve drilling efficiency, reduce failures of drillstring components and to minimize the impact of the drilling process to the environment by reducing drilling times, it is paramount to control the dynamics of the drillstring during the well drilling process. The drilling process entails transmission of torque and axial force from the drilling rig at the surface to the drillbit along a thin (7-15cm in diameter), kilometers long drillstring that lies inside a snaking and tortuous wellpath. Downhole sensing is typically limited to near bit sensors, but low bandwidth (~10 bits / second) and high latency (up to 30 seconds) means that traditional closed loop feedback control is highly inefficient for control of bit-rock interaction and drillstring dynamics. To achieve fully closed loop, automated control of the drilling process, reliable real-time, physics-based models of the system dynamics and effective online parameter fitting are necessary. Models exist that seek to quantify the effects of borehole inclination and tortuosity on the static behavior of the drillstring; however, the dynamic behavior of the system is only now being fully measured, understood, and quantified. Drillstring modelling has stretched back sixty years, and there have been significant efforts to create comprehensive drillstring models, but these models are computationally complex and are unsuited to real-time optimization or control. The proposed research program seeks to develop a series of feedforward or model predictive control strategies by developing a set of reduced order models of the dynamic behavior of the drillstring system, validating them with high quality calibrated, precise and continuous data recorded in the laboratory and the field, and implementing online fitting of model parameters through machine learning techniques. The development of these accurate, validated and computationally efficient models of the drilling system will improve control systems and equipment design and will drive an overall increase in the efficiency of the drilling process. The control systems developed will further increase the efficiency and safety of drilling operations and reduce the carbon footprint of operations by mitigating the adverse effects of coupled vibrations, improving drilling performance and improving wellbore quality.
获取地下深处的资源仍然是各个行业面临的挑战,包括石油和天然气开采以及地热能利用。 对于石油和天然气资源,易于开采的储层已经被开发,而新的目标则处于更具挑战性的环境和地层中。 从历史上看,为进入储层而钻探的井具有简单的垂直或切线轨迹,但现代井越来越多地具有复杂的三维轨迹,井道高度曲折或蜿蜒。 为了提高钻井效率、减少钻柱部件故障并通过减少钻井时间来最大程度地减少钻井过程对环境的影响,在钻井过程中控制钻柱的动态至关重要。 钻井过程需要将扭矩和轴向力从地面钻机沿着一条细长(直径 7-15 厘米)、数公里长的钻柱传递到钻头,该钻柱位于蜿蜒曲折的井道内。 井下传感通常仅限于钻头附近的传感器,但低带宽(约 10 位/秒)和高延迟(长达 30 秒)意味着传统的闭环反馈控制对于钻头-岩石相互作用和钻柱动力学的控制效率非常低。 为了实现钻井过程的全闭环自动化控制、可靠的实时、基于物理的系统动力学模型以及有效的在线参数拟合是必要的。 现有模型旨在量化井眼倾斜度和弯曲度对钻柱静态行为的影响;然而,系统的动态行为现在才被完全测量、理解和量化。 钻柱建模可以追溯到六十年前,人们在创建综合钻柱模型方面付出了巨大的努力,但这些模型计算复杂,不适合实时优化或控制。 拟议的研究计划旨在开发一系列前馈或模型预测控制策略,方法是开发一组钻柱系统动态行为的降阶模型,并使用实验室和实验室记录的高质量校准、精确和连续数据对其进行验证。领域,并通过机器学习技术实现模型参数的在线拟合。 这些准确、经过验证且计算效率高的钻井系统模型的开发将改进控制系统和设备设计,并将推动钻井过程效率的全面提高。 所开发的控制系统将进一步提高钻井作业的效率和安全性,并通过减轻耦合振动的不利影响、提高钻井性能和改善井眼质量来减少作业的碳足迹。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shor, Roman其他文献

Shor, Roman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shor, Roman', 18)}}的其他基金

System Dynamics and Control of Deep Drilling Systems
深钻系统的系统动力学和控制
  • 批准号:
    RGPIN-2019-04390
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
System Dynamics and Control of Deep Drilling Systems
深钻系统的系统动力学和控制
  • 批准号:
    RGPIN-2019-04390
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Bit dullness grading using a handheld device
使用手持设备进行钻头钝度分级
  • 批准号:
    561422-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
Modeling and Online Optimization of Hard Rock Drilling for Advanced Geothermal Systems
先进地热系统硬岩钻探的建模和在线优化
  • 批准号:
    561118-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
System Dynamics and Control of Deep Drilling Systems
深钻系统的系统动力学和控制
  • 批准号:
    RGPIN-2019-04390
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Online Optimization of Hard Rock Drilling for Advanced Geothermal Systems
先进地热系统硬岩钻探的建模和在线优化
  • 批准号:
    561118-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
System Dynamics and Control of Deep Drilling Systems
深钻系统的系统动力学和控制
  • 批准号:
    RGPIN-2019-04390
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Bit dullness grading using a handheld device
使用手持设备进行钻头钝度分级
  • 批准号:
    561422-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
COVID-19: Utilizing Smart Phone Sensors and Activity Trackers for Remote Vitals Monitoring and Screening
COVID-19:利用智能手机传感器和活动跟踪器进行远程生命体征监测和筛查
  • 批准号:
    554330-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants
COVID-19: Utilizing Smart Phone Sensors and Activity Trackers for Remote Vitals Monitoring and Screening
COVID-19:利用智能手机传感器和活动跟踪器进行远程生命体征监测和筛查
  • 批准号:
    554330-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Alliance Grants

相似国自然基金

基于系统动力学的复杂网络系统容错控制及新型电力系统安全域理论研究
  • 批准号:
    62373089
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
承载-减震双功能“柱中柱”系统的动力学模型与控制机理研究
  • 批准号:
    52308308
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
异构集群系统层级式动力学建模与最优轨迹协同控制研究
  • 批准号:
    52305118
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非零和微分博弈脉冲控制系统的动力学研究及学习算法设计
  • 批准号:
    62373310
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自治水下运载器-绳驱动机械手系统多体耦合动力学建模与控制方法研究
  • 批准号:
    52305136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Control-Aware System Identification of Heterogenous Multiscale Brain Network Dynamics
职业:异构多尺度脑网络动力学的控制感知系统识别
  • 批准号:
    2239654
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Elucidating the mechanisms of protein secretion across the outer membrane by bacterial autotransporters
阐明细菌自转运蛋白跨外膜分泌蛋白质的机制
  • 批准号:
    10736193
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Understanding and Targeting Host Processes Essential to Plasmodium Infection
了解并针对疟原虫感染所必需的宿主过程
  • 批准号:
    10735130
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
Neural control of speech generation in human motor cortex
人类运动皮层语音生成的神经控制
  • 批准号:
    10722067
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了