Iwasawa Theory and p-adic Hodge Theory

岩泽理论和p进霍奇理论

基本信息

  • 批准号:
    RGPIN-2019-03987
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

The proposed project falls under the following three broad headings: 1) Iwasawa theory of the fine Selmer groups and Selmer groups: I will continue my investigations in Iwasawa theory and study the mu invariant of the dual Selmer group and the dual fine Selmer group, which are finitely generated modules over certain Iwasawa algebras. These modules have been studied extensively in the case of Galois representations that are ordinary at a prime p. We shall extend our earlier study to the case of Galois representations that have supersingular reduction at the prime p.Two fundamental Galois representations that we intend to study are those arising from elliptic curves and elliptic modular forms. We shall also simultaneously study the dependence of the Iwasawa theoretic invariants, such as the mu invariant and the lambda invariant, on the associated residual representation. In the case of an elliptic curve defined over a number field, fixing an odd prime p at which the Iwasawa modules are studied, this will naturally lead to understanding the congruence properties of the values of the L-functions of the elliptic curve modulo the prime p. 2) Patching and Adic spaces: I intend to initiate the study of patching techniques in the context of Perfectoid spaces and p-adic Hodge theory. The Patching techniques allow us to patch local data on a curve defined over a p-adic local field to a global one on the curve. As an example, these techniques allow us to construct a quadratic bundle on the whole curve when we are given quadratic spaces over the local rings which are valuation rings on the function field of the curve and satisfy additional verifiable conditions. I plan to explore the adaptability of these techniques to other situations, especially over rings and fields arising in the theory of p-adic Galois representations and those of Adic spaces. We expect these to have interesting applications in p-adic Hodge theory and plan to investigate possible applications to the work of Peter Scholze on Perfectoid spaces. 3) Witt groups of smooth projective surfaces over the reals and finite fields: The Witt ring of a field of characteristic different from 2 studies equivalence classes of quadratic forms over the field. It has a rich structure with connections to algebraic K-theory and Galois cohomology. The Witt group of an algebraic variety involves studying vector bundles on the variety which are equipped with a quadratic space structure on the associated sheaf. The Witt group is a stable birational invariant of the variety and has interesting connections to other birational invariants such as the Chow group of algebraic cycles, the Brauer group and the unramified cohomology groups.The structure of the Witt group of the variety depends on the base field over which the variety is defined. We intend to compute the explicit structure of certain classes of surfaces such as the K3 surfaces, elliptic surfaces over the base field of real numbers and finite fields.
拟议项目分为以下三个大标题: 1)精细Selmer群和Selmer群的Iwasawa理论:我将继续对Iwasawa理论的研究,研究对偶Selmer群和对偶精细Selmer群的mu不变量,它们是某些Iwasawa代数上的有限生成模。这些模块已经在素数 p 处的伽罗瓦表示的情况下进行了广泛的研究。我们将把我们早期的研究扩展到在素数 p 处具有超奇异约简的伽罗瓦表示的情况。我们打算研究的两个基本伽罗瓦表示是由椭圆曲线和椭圆模形式产生的伽罗瓦表示。我们还将同时研究岩泽理论不变量(例如 mu 不变量和 lambda 不变量)对相关残差表示的依赖性。在数域上定义的椭圆曲线的情况下,固定一个奇素数 p 来研究 Iwasawa 模,这自然会导致理解椭圆曲线的 L 函数值以素数为模的同余性质p。 2)补丁和adic空间:我打算在perfectoid空间和p-adic Hodge理论的背景下开始研究补丁技术。修补技术允许我们将 p 进局部场上定义的曲线上的局部数据修补到曲线上的全局数据。例如,当我们在局部环上给出二次空间时,这些技术允许我们在整个曲线上构建二次丛,局部环是曲线函数域上的评估环并满足附加的可验证条件。我计划探索这些技术对其他情况的适应性,特别是在 p-adic 伽罗瓦表示理论和 Adic 空间理论中出现的环和域。我们期望这些在 p-adic Hodge 理论中具有有趣的应用,并计划研究 Peter Scholze 在 Perfectoid 空间上的工作的可能应用。 3)实数域和有限域上的光滑射影面的维特群:特征域不同于2的维特环研究域上二次形式的等价类。它具有与代数 K 理论和伽罗瓦上同调相关的丰富结构。代数簇的维特群涉及研究该簇上的向量丛,该簇在相关束上配备有二次空间结构。维特群是簇的稳定双有理不变量,与其他双有理不变量有有趣的联系,例如代数圈的 Chow 群、布劳尔群和无分支上同调群。簇的维特群的结构取决于基定义品种的字段。我们打算计算某些类型的曲面的显式结构,例如 K3 曲面、实数基域和有限域上的椭圆曲面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ramdorai, sujatha其他文献

ramdorai, sujatha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ramdorai, sujatha', 18)}}的其他基金

Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和p进霍奇理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和p进霍奇理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

负泊松比复合钢板剪力墙地震–爆炸动力灾变性能及协同设计理论研究
  • 批准号:
    52378179
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
通感算一体化智能车联网资源管理理论与技术研究
  • 批准号:
    62371406
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
地聚合物相调控理论与关键材料制备研究
  • 批准号:
    52378257
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超大规模MIMO系统信道状态信息获取与无线传输理论研究
  • 批准号:
    62371180
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
代数群的表示理论及其在Siegel模形式上的应用
  • 批准号:
    12301016
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Elliptic Curves, p-adic Deformations, and Iwasawa Theory
椭圆曲线、p 进变形和岩泽理论
  • 批准号:
    2101458
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和p进霍奇理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和p进霍奇理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了