Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
基本信息
- 批准号:RGPIN-2017-04671
- 负责人:
- 金额:$ 2.7万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Portrayed as “the next industrial revolution”, additive manufacturing (AM) is transforming consumer product design and manufacturing. AM differs drastically from traditional manufacturing methods (TMM) such as subtractive (milling or drilling), formative (casting or forging) and joining (welding or fastening) processes.
AM of plastic parts is considered as the state-of-the-art. However, AM of metals and ceramics requires more extensive research and development efforts to expand the scope of applications to structural and high-performance functional parts. Efforts are required to reach maturation of AM as more work is required to understand the process parameters/process output relationships at the fundamental level (process mapping).
In recent years, uOttawa researchers have been instrumental in advancing the engineering science of Cold Gas Dynamic Spray Additive Manufacturing (CGDSAM). CGDSAM is still in its infancy, and can be considered as a (solid state) Material Jetting AM process for metals and cermets. Despite academic consensus that CGDSAM is a strong candidate for the market of large parts that are difficult/expensive to produce by TMM and early proof-of-concept successes, there is a lack of fundamental knowledge on what controls the process output. As such, the process “mapping” is required to allow process evaluation, improvement, transfer and commercial implementation. Furthermore the use of AM offers the potential to produce sensors allowing in-situ monitoring of AM mechanical parts performance.
Studies have shown that CGDSAM can produce complex shapes of small dimension (mm-size) non-structural parts that are now used commercially. Recent work has focused on CGDSAM of titanium parts due to the large potential market as these are expensive and costly to machine using TMM. Demonstration of the CGDSAM process potential for sensor production has also recently been made.
Based on these recent progresses for potential market niche applications, the long-term objective of this program is to establish the CGDSAM process “map” and allow the production of cm-size titanium alloy parts imbedded with sensors for wireless in-situ performance monitoring of the produced parts.
The outcome will establish the potential of CGDSAM for titanium alloy part production that don't require extremely fine intricate details and assess its advantage due to the process large throughput (orders of magnitudes beyond current existing AM processes) and the absence of “built tray” typically limiting the size of AM parts.
The positive outcome of this program will also make monitoring/transmission of in-situ performance possible. This could provide crucial feedback on parts performance for maintenance optimisation and failure prevention. It could also provide feedback for designers to allow refined modeling and revision of new designs.
增材制造(AM)被称为“下一次工业革命”,它正在改变消费产品的设计和制造,它与减材(铣削或钻孔)、成形(铸造或锻造)和连接等传统制造方法(TMM)有很大不同。焊接或紧固)工艺。
塑料零件的增材制造被认为是最先进的,但是金属和陶瓷的增材制造还需要更广泛的研究和开发工作,以将应用范围扩大到结构和高性能功能零件。增材制造的成熟,因为需要做更多的工作来理解基本层面的过程参数/过程输出关系(过程映射)。
近年来,渥太华大学的研究人员在推进冷气动态喷涂增材制造 (CGDSAM) 工程科学方面发挥了重要作用,该技术仍处于起步阶段,可被视为金属和金属陶瓷的(固态)材料喷射增材制造工艺。尽管学术界一致认为 CGDSAM 是 TMM 难以生产/昂贵的大型零件市场的有力候选者,并且取得了早期概念验证的成功,但仍缺乏这方面的基础知识。因此,需要过程“映射”来进行过程评估、改进、转移和商业实施。此外,增材制造的使用提供了生产允许现场监控增材制造机械零件性能的传感器的潜力。
研究表明,CGDSAM 可以生产复杂形状的小尺寸(毫米尺寸)非结构零件,目前这些零件已投入商业使用,因为钛零件的市场潜力巨大,因为这些零件价格昂贵且加工成本较高。最近还使用 TMM 演示了 CGDSAM 工艺在传感器生产中的潜力。
基于这些潜在市场利基应用的最新进展,该计划的长期目标是建立 CGDSAM 工艺“图”,并允许生产嵌入传感器的厘米尺寸钛合金零件,用于无线原位性能监控生产的零件。
结果将确定 CGDSAM 在不需要极其精细复杂细节的钛合金零件生产方面的潜力,并评估其由于工艺吞吐量大(超出当前现有增材制造工艺的数量级)和不存在“内置托盘”而带来的优势。通常会限制增材制造零件的尺寸。
该计划的积极成果还将使现场性能的监控/传输成为可能,这可以为维护优化和故障预防提供重要的反馈,还可以为设计人员提供反馈,以允许改进建模和修改新设计。 。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jodoin, Bertrand其他文献
Jodoin, Bertrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jodoin, Bertrand', 18)}}的其他基金
Mitochondrial Generator Approach using Moisture-Electricity Energy Transformation Devices for Powering Sensors
使用湿电能量转换装置为传感器供电的线粒体发生器方法
- 批准号:
RGPIN-2022-02964 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Mitochondrial Generator Approach using Moisture-Electricity Energy Transformation Devices for Powering Sensors
使用湿电能量转换装置为传感器供电的线粒体发生器方法
- 批准号:
RGPIN-2022-02964 - 财政年份:2022
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
RGPIN-2017-04671 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Artificial Neural Networks Approach for Ductility Prediction of Copper Cold Spray Laser Heat Treated Coatings
人工神经网络方法预测铜冷喷涂激光热处理涂层的延展性
- 批准号:
567502-2021 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
Artificial Neural Networks Approach for Ductility Prediction of Copper Cold Spray Laser Heat Treated Coatings
人工神经网络方法预测铜冷喷涂激光热处理涂层的延展性
- 批准号:
567502-2021 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
RGPIN-2017-04671 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Next Generation of Abradable Coatings for Intermediate Gas Turbine Compressor Stages: Manufacturing Process Development
用于中间燃气轮机压缩机级的下一代耐磨涂层:制造工艺开发
- 批准号:
543864-2019 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Next Generation of Abradable Coatings for Intermediate Gas Turbine Compressor Stages: Manufacturing Process Development
用于中间燃气轮机压缩机级的下一代耐磨涂层:制造工艺开发
- 批准号:
543864-2019 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Collaborative Research and Development Grants
Photocatalyst antiviral coatings - Covid 19
光触媒抗病毒涂料 - Covid 19
- 批准号:
555232-2020 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
Photocatalyst antiviral coatings - Covid 19
光触媒抗病毒涂料 - Covid 19
- 批准号:
555232-2020 - 财政年份:2020
- 资助金额:
$ 2.7万 - 项目类别:
Alliance Grants
相似国自然基金
马尔可夫近似下超冷费米气体的耗散动力学研究
- 批准号:12304290
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
致密气体介质中的超快动力学与脉冲整形研究
- 批准号:12374266
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
玻色-费米混合气体中的新物态及其动力学的理论研究
- 批准号:12374243
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
电催化合成氨双功能层气体扩散膜电极的原位构建及微观动力学研究
- 批准号:22308274
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
二维均匀超冷费米气体中非平衡态动力学的时间分辨测量
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
RGPIN-2017-04671 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
RGPIN-2017-04671 - 财政年份:2021
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
RGPIN-2017-04671 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Individual
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
507972-2017 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Cold Gas Dynamics Manufacturing Process Development for Smart Parts
智能零件的冷气体动力学制造工艺开发
- 批准号:
507972-2017 - 财政年份:2019
- 资助金额:
$ 2.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements