The Topology, Geometry and Algebra of Projective Linear Groups

射影线性群的拓扑、几何和代数

基本信息

  • 批准号:
    RGPIN-2016-03780
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

An Azumaya algebra is a twisted form of a matrix algebra. Since matrices themselves are ubiquitous, these objects exist and are noteworthy in different mathematical contexts. In the context of algebras over a field, an Azumaya algebra is simply an algebra that becomes isomorphic to a matrix algebra upon extension to some (separable) algebraic extension. The prototypical example here is Hamilton's Quaternions over the real field, which becomes isomorphic to 2x2 complex matrices upon extension to the complex field. Azumaya algebras over fields are the Central Simple Algebras of classical importance. In the topological context, an Azumaya algebra over a space X is a family of algebras parametrized by X that is locally isomorphic to the trivial family of nxn complex matrices. Intermediate between the two contexts above is that of Azumaya algebras over varieties, since varieties straddle the worlds of topological spaces and of algebras over fields. This project aims to bring topological tools applicable to Azumaya algebras over topological spaces to bear in specific cases that relate to arithmetic or algebraic questions, and consequently to furnish a stream of examples and counterexamples. These examples will help to refine the study of Azumaya algebras in the algebraic context by either disproving or supporting existing conjectures, and by providing a guide to the behaviour one expects over high-dimensional varieties and their function fields, which can be hard to address directly using algebraic techniques. It also aims to transpose the calculations made in the topological context to an algebraic context, via etale cohomology and A1 or motivic homotopy theories, and to establish positive results in the algebraic theory by this method.
Azumaya 代数是矩阵代数的扭曲形式。由于矩阵本身无处不在,因此这些对象在不同的​​数学环境中都存在并且值得注意。 在域上的代数背景下,Azumaya 代数只是在扩展到某个(可分离的)代数扩展时与矩阵代数同构的代数。这里的典型例子是实数域上的汉密尔顿四元数,它在扩展到复数域后变得与 2x2 复数矩阵同构。域上的 Azumaya 代数是具有经典重要性的中心简单代数。 在拓扑背景下,空间 X 上的东屋代数是由 X 参数化的代数族,该代数族与 nxn 复矩阵的平凡族局部同构。 介于上述两个上下文之间的是 Azumaya 代数的簇,因为簇跨越了拓扑空间和域上的代数的世界。 该项目旨在将适用于 Azumaya 代数的拓扑工具引入拓扑空间,以应用于与算术或代数问题相关的特定情况,从而提供一系列示例和反例。这些例子将有助于在代数背景下完善对 Azumaya 代数的研究,反驳或支持现有的猜想,并为人们在高维簇及其函数域上预期的行为提供指导,而这些行为很难直接解决使用代数技术。 它还旨在通过 etale 上同调和 A1 或动机同伦理论将拓扑环境中进行的计算转置到代数环境中,并通过这种方法在代数理论中建立积极的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Williams, Thomas其他文献

<i>Psychotria samoritourei</i> (Rubiaceae), a new liana species from Loma-Man in Upper Guinea, West Africa
  • DOI:
    10.1007/S12225-016-9638-5
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Cheek, Martin;Williams, Thomas
  • 通讯作者:
    Williams, Thomas
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures.
四肢微波断层扫描: 1.专用2D系统和生理特征。
  • DOI:
  • 发表时间:
    2011-04-07
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Semenov, Serguei;Kellam, James;Sizov, Yuri;Nazarov, Alexei;Williams, Thomas;Nair, Bindu;Pavlovsky, Andrey;Posukh, Vitaly;Quinn, Michael
  • 通讯作者:
    Quinn, Michael
The prognostic significance of early blood neurofilament light chain concentration and magnetic resonance imaging variables in relapse‐onset multiple sclerosis
早期血液神经丝轻链浓度和磁共振成像变量在复发性多发性硬化症中的预后意义
  • DOI:
    10.1002/brb3.2700
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Williams, Thomas;Heslegrave, Amanda;Zetterberg, Henrik;Miszkiel, Katherine A.;Barkhof, Frederik;Ciccarelli, Olga;Brownlee, Wallace J.;Chataway, Jeremy
  • 通讯作者:
    Chataway, Jeremy
Directions of change in intrinsic case severity across successive SARS-CoV-2 variant waves have been inconsistent
连续 SARS-CoV-2 变异波中病例内在严重程度的变化方向不一致
  • DOI:
    10.1016/j.jinf.2023.05.019
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pascall, David J.;Vink, Elen;Blacow, Rachel;Bulteel, Naomi;Campbell, Alasdair;Campbell, Robyn;Clifford, Sarah;Davis, Chris;Filipe, Ana da Silva;El Sakka, Noha;Fjodorova, Ludmila;Forrest, Ruth;Goldstein, Emily;Gunson, Rory;Haughney, John;Holden, Matthew T. G.;Honour, Patrick;Hughes, Joseph;James, Edward;Lewis, Tim;MacLean, Oscar;McHugh, Martin;Mollett, Guy;Nyberg, Tommy;Onishi, Yusuke;Parcell, Ben;Ray, Surajit;Robertson, David L.;Seaman, Shaun R.;Shabaan, Sharif;Shepherd, James G.;Smollett, Katherine;Templeton, Kate;Wastnedge, Elizabeth;Wilkie, Craig;Williams, Thomas;Thomson, Emma C.
  • 通讯作者:
    Thomson, Emma C.
Machine learning and metabolic modelling assisted implementation of a novel process analytical technology in cell and gene therapy manufacturing
  • DOI:
    10.1038/s41598-023-27998-2
  • 发表时间:
    2023-01-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Williams, Thomas;Kalinka, Kevin;Sanches, Rui;Blanchard-Emmerson, Greg;Watts, Samuel;Davies, Lee;Knevelman, Carol;McCloskey, Laura;Jones, Peter;Mitrophanous, Kyriacos;Miskin, James;Dikicioglu, Duygu
  • 通讯作者:
    Dikicioglu, Duygu

Williams, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Williams, Thomas', 18)}}的其他基金

Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Classical and A1-homotopy theory of linear algebraic groups
线性代数群的经典和A1-同伦论
  • 批准号:
    RGPIN-2021-02603
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
The Topology, Geometry and Algebra of Projective Linear Groups
射影线性群的拓扑、几何和代数
  • 批准号:
    RGPIN-2016-03780
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

奇异黎曼叶状结构的微分几何学研究
  • 批准号:
    12371048
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于代数几何学的统计学习理论研究
  • 批准号:
    12171382
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非欧几何学的若干历史问题研究
  • 批准号:
    12161086
  • 批准年份:
    2021
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2314082
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
  • 批准号:
    2230159
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Categorical algebra in analysis, geometry, and topology
分析、几何和拓扑中的分类代数
  • 批准号:
    RGPIN-2019-05274
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了