Mirrored Memristor Crossbar Array for Digital and Analog Implementation of Computer Arithmetic and, Spiking Neural Networks
用于计算机算术和尖峰神经网络的数字和模拟实现的镜像忆阻器交叉阵列
基本信息
- 批准号:RGPIN-2019-04693
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Memristor has the potential to enhance or augment several areas of integrated circuit design, computing and application. Recent progress in the design and fabrication of Memristor devices will enable them to be a core enabling technology for future affordable integrated circuits that need to be scalable, energy-efficient and reconfigurable. A Memristor's compatibility with CMOS structures make them an ideal device for various diverse applications. These include: logic operations, neuromorphic devices for high speed one and two-dimensional digital signal processing (DSP) with low power consumption, non-volatile memory, analogue electronics, and reconfigurable circuits and hardware that can learn and adapt autonomously. Memristor crossbar architectures are considered as one of the most promising platforms for future memory, logic and in-memory calculation applications.***The objectives of the proposed research are :***(a) To further develop the state-of-the-art Memristive based architectures and circuits for applications on digital design, finite field multipliers, computer arithmetic, neural networks, digital filters, few to mention. To further explore the design of arithmetic circuits using Continuous Valued Number System (CVNS) developed by the applicant and his students using Memristors for the design of a fully analogue neural network. We plan to develop an area-efficient Mirrored Memristive Crossbar Architecture by either eliminating feedback and/or reducing the number of transistors required.***(b) Spiking Neural Networks (SNNs) have emerged recently with a good potential for a wide ranges of applications like pattern recognition, clustering etc. It has been demonstrated that these networks can closely resemble some of the activities and function of the brain. There are many models reported in the literature that precisely define behavior and the functionality of their neurons. These models are mostly very complicated for practical implementation. We shall work to develop an accurate and efficient model for the digital implementation of SNNs which closely approximate models presented in the literature. We would look at the trade off for resource requirements versus higher accuracy that enable the designer to choose the model that fit his/her application. We shall also investigate novel ways of training SNNs through Spike Time Dependent Plasticity (STDP) methods for applications, such as, pattern recognition. We shall try to develop a Memrisor based digital implementation of SNNs for pattern recognition applications. The Memristor is being regarded as the viable technology for nano electronic circuits and a future replacement for many CMOS devices. Research in this area is very important for Canada to be competitive in the evolving world economy. Furthermore, this research will lead to competitive low-cost, low-power, high-speed and area-efficient computer arithmetic, and DSP algorithms and reconfigurable architectures that enable synergy.
忆阻器具有增强或增强集成电路设计、计算和应用的多个领域的潜力。忆阻器器件设计和制造的最新进展将使它们成为未来可扩展、节能和可重构的经济型集成电路的核心支持技术。忆阻器与 CMOS 结构的兼容性使其成为各种不同应用的理想器件。其中包括:逻辑运算、低功耗高速一维和二维数字信号处理 (DSP) 的神经形态设备、非易失性存储器、模拟电子器件以及可自主学习和适应的可重构电路和硬件。忆阻器交叉架构被认为是未来存储器、逻辑和内存计算应用最有前途的平台之一。***拟议研究的目标是:***(a) 进一步开发最新技术-基于忆阻艺术的架构和电路,适用于数字设计、有限域乘法器、计算机算术、神经网络、数字滤波器等应用。进一步探索使用申请人及其学生开发的连续值数系统(CVNS)的算术电路设计,使用忆阻器来设计全模拟神经网络。我们计划通过消除反馈和/或减少所需晶体管的数量来开发面积高效的镜像忆阻交叉架构。***(b) 尖峰神经网络 (SNN) 最近出现,具有广泛的应用潜力。模式识别、聚类等应用。已经证明,这些网络可以非常类似于大脑的一些活动和功能。文献中报道了许多精确定义神经元行为和功能的模型。这些模型对于实际实施来说大多非常复杂。我们将努力开发一个准确有效的模型来实现 SNN 的数字化,该模型非常接近文献中提出的模型。我们将考虑资源需求与更高准确度之间的权衡,使设计人员能够选择适合其应用的模型。我们还将研究通过尖峰时间相关可塑性 (STDP) 方法训练 SNN 的新方法,以用于模式识别等应用。我们将尝试开发基于忆阻器的 SNN 数字实现,用于模式识别应用。忆阻器被认为是纳米电子电路的可行技术以及许多 CMOS 器件的未来替代品。该领域的研究对于加拿大在不断发展的世界经济中保持竞争力非常重要。此外,这项研究将带来具有竞争力的低成本、低功耗、高速和节省空间的计算机算法,以及能够实现协同作用的DSP算法和可重构架构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmadi, Majid其他文献
Water-Soluble Derivatives of Octanuclear Iron-Oxo-Pyrazolato Complexes; An Experimental and Computational Study.
八核铁-氧代-吡唑配合物的水溶性衍生物;
- DOI:
- 发表时间:
2012-08-01 - 期刊:
- 影响因子:2.3
- 作者:
Das, Soma;Chakraborty, Indranil;Skachkov, Dmitry;Ahmadi, Majid;Ishikawa, Yasuyuki;Baran, Peter;Raptis, Raphael G - 通讯作者:
Raptis, Raphael G
Immunomodulatory role of Nanocurcumin in COVID-19 patients with dropped natural killer cells frequency and function
纳米姜黄素对自然杀伤细胞频率和功能下降的 COVID-19 患者的免疫调节作用
- DOI:
10.1016/j.ejphar.2022.175267 - 发表时间:
2022-10-15 - 期刊:
- 影响因子:5
- 作者:
Abbaspour-Aghdam, Sanaz;Hazrati, Ali;Abdolmohammadi-Vahid, Samaneh;Tahmasebi, Safa;Mohseni, Jafar;Valizadeh, Hamed;Nadiri, Mehdi;Mikaeili, Haleh;Sadeghi, Armin;Yousefi, Mehdi;Roshangar, Leila;Nikzad, Behzad;Jadidi-Niaragh, Farhad;Kafil, Hossein Samadi;Malekpour, Kosar;Ahmadi, Majid - 通讯作者:
Ahmadi, Majid
The effect of osteoporotic and non-osteoporotic individuals’ T cell-derived exosomes on osteoblast cells’ bone remodeling related genes expression and alkaline phosphatase activity
骨质疏松和非骨质疏松个体 — T 细胞来源的外泌体对成骨细胞 — 骨重塑相关基因表达和碱性磷酸酶活性的影响
- DOI:
10.1186/s13104-022-06139-4 - 发表时间:
2022-08-08 - 期刊:
- 影响因子:1.8
- 作者:
Omidvar, Mohammad Hasan;Soltani-Zangbar, Mohammad Sadegh;Zamani, Majid;Motavalli, Roza;Jafarpoor, Mehdi;Dolati, Sanam;Ahmadi, Majid;Mehdizadeh, Amir;Khabbazi, Alireza;Hajialilo, Mehrzad;Yousefi, Mehdi - 通讯作者:
Yousefi, Mehdi
Preliminary Study on Biological Control of Cyclops of Zooplankton in Drinking Water Source
饮用水源中浮游动物独眼巨人生物防治的初步研究
- DOI:
10.1016/j.reth.2023.10.006 - 发表时间:
2023-12 - 期刊:
- 影响因子:4.3
- 作者:
Malekpour, Kosar;Hazrati, Ali;Khosrojerdi, Arezou;Roshangar, Leila;Ahmadi, Majid - 通讯作者:
Ahmadi, Majid
Potential therapeutic applications of extracellular vesicles in the immunopathogenesis of COVID-19
细胞外囊泡在 COVID-19 免疫发病机制中的潜在治疗应用
- DOI:
10.1016/j.prp.2022.154280 - 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Motallebnezhad, Morteza;Omraninava, Melodi;Ghaleh, Hadi Esmaeili Gouvarchin;Jonaidi-Jafari, Nematollah;Hazrati, Ali;Malekpour, Kosar;Bagheri, Yasser;Izadi, Morteza;Ahmadi, Majid - 通讯作者:
Ahmadi, Majid
Ahmadi, Majid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmadi, Majid', 18)}}的其他基金
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Memristor-based Architectures for Neuromorphic Computing
用于神经形态计算的基于忆阻器的架构
- 批准号:
RGPIN-2020-06613 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于红外调控的自激活忆阻器阵列型强物理不可克隆函数硬件系统研究
- 批准号:62305002
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
提高忆阻器存算一体系统可靠性的多层次协同优化方法研究
- 批准号:62302179
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于二维超晶格化合物的光电忆阻器及其突触仿生与神经形态视觉传感应用研究
- 批准号:62365010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
基于忆阻器单片三维集成的仿生树突神经网络研究
- 批准号:62304122
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
具有宽光谱带响应的高性能低功耗光调制二极管型有机半导体忆阻器
- 批准号:62375125
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
ERI: Memristor-based Neuromorphic Circuit Design for Closed-Loop Deep Brain Stimulation
ERI:基于忆阻器的闭环深部脑刺激神经形态电路设计
- 批准号:
2301589 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
FuSe-TG: Co-designing Novel Memristor Heterostructures for Brain Inspired Computers
FuSe-TG:为类脑计算机共同设计新型忆阻器异质结构
- 批准号:
2235474 - 财政年份:2023
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Mixture of Experts Committee Machine Implementation on Memristor Crossbar Core
忆阻器交叉核心上的专家委员会机器混合实现
- 批准号:
572680-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
Novel Filament-based Memristor Devices
新型基于灯丝的忆阻器器件
- 批准号:
572682-2022 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
University Undergraduate Student Research Awards
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual