Geometric Complex Analysis

几何复分析

基本信息

项目摘要

In value distribution theory, the Nevanlinna-Cartan theory was established for function fields of several variables, which yields finitness theorems as applications. In the case of semi-abelian variety, the Second Main Theorem was proved by Noguchi, Yamanoi, Winkelmann, who also showed that the distribution of entire curves is analogous to that of integral points, and obtained their dimension estimates. On uniqeness theorem of holomorphic mappings, some results were obtained by Aihara, Fujimoto, Shirosaki. New examples of hyperbolic projective hypersurfaces were constructed by Shirosaki, Fujimoto.In CR geometry, Kuranishi's program on deformation of complex strutures was accomplished by Miyajima, Fefferman's conjecture on the asymptotic expansion of the Bergman kernel near the strongly pseudo-convex boundary was settled by Hirachi, and new CR invariants were obtained by Komatsu, Kamimoto. Ohsawa proved new divison, L^2 extension theorems, and the non-existence of real analytic Levi-flat hypersurfaces in P^2.New results on function theoretic property of complex Lie groups, especially complex quasi-tori were obtained by Kazama, Abe, Umeno, those on the holomorphic equivalence problem of tube domains by Shimizu, and those on the characterization of ellipsoids by their boundary by Kodama.Nakano's conjecture on weakly 1-complete manifolds was solved by Takayama with application by himself and Abe to the Lefschetz theorem for semi-abelian varieties. By Mabuchi, the Bando-Calabi-Futaki character was shown to be an obstruction to the semi-stability. Some progress were made by Yoshikawa on the automorphic property of analytic torsion, and by Tsuji concerning applications of analytic Zariski decompositions.About other areas, new results on complex dinamical systems were obtained by Ueda, Nishimura, those on hypergeometric functions by Terada, Kato, and those on singularities and their deformations by Tomari, Okuma, Tsuji. The present research project was directed by Noguchi.
在价值分布理论中,为几个变量的函数字段建立了Nevanlinna-Cartan理论,从而得出有限定理作为应用。就半阿伯里亚品种而言,第二个主要定理由野口,Yamanoi,Winkelmann证明,他们还表明,整个曲线的分布类似于积分点的分布,并获得了其维度估计值。关于全态映射的Uniqeness定理,Shirosaki的Aihara,Fujimoto Aihara获得了一些结果。 New examples of hyperbolic projective hypersurfaces were constructed by Shirosaki, Fujimoto.In CR geometry, Kuranishi's program on deformation of complex strutures was accomplished by Miyajima, Fefferman's conjecture on the asymptotic expansion of the Bergman kernel near the strongly pseudo-convex boundary was settled by Hirachi, and new CR invariants were由Kamimoto Komatsu获得。 ohsawa证明了新的分歧,l^2延伸定理,以及在p^2中,实际分析性的levi-flat hyperface的不存在,尤其是复杂的谎言基团的功能理论特性,尤其是复杂的quasi-tori,尤其是复杂的quasi-tori,由卡萨马,abe,abe,umeno,umeno and th the th phimorphicize andse and Shimize and Somidiids and Shimiziend and Somidiid andiz andiiz的形式所产生的结果。通过Kodama的边界,纳卡诺(Nakano)在弱1元中的歧视中的猜想是由他本人和安倍(Abe)和安倍(Abe)的lefschetz定理解决的。由Mabuchi,Bando-Calabi-Futaki特征被证明是对半稳定性的阻碍。 Some progress were made by Yoshikawa on the automorphic property of analytic torsion, and by Tsuji concerning applications of analytic Zariski decompositions.About other areas, new results on complex dinamical systems were obtained by Ueda, Nishimura, those on hypergeometric functions by Terada, Kato, and those on singularities and their deformations by Tomari, Okuma, Tsuji.本研究项目由Noguchi指导。

项目成果

期刊论文数量(569)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Tajima and Y.Nakamura: "An algorithm for computing the residue of a rational function via D-Modules"Josai Mathematical Monographes-Computer Algebra-. 2. 149-158 (2000)
S.Tajima 和 Y.Nakamura:“通过 D 模块计算有理函数余数的算法”Josai 数学专着 - 计算机代数 -。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Okuma: "A numerical condition for a deformation of a Gorenstein surface singularity to admit a simultaneous log-canonical model"Proc.Amer.Math.Soc.. (in press).
T.Okuma:“允许同时对数正则模型的 Gorenstein 表面奇点变形的数值条件”Proc.Amer.Math.Soc..(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Hirachi: "Construction of boundary invariants and the logarithmic singularity of the Bergman kernel"Annals of Mathematics. 151. 151-191 (2000)
K.Hirachi:“边界不变量的构造和伯格曼核的对数奇异性”数学年鉴。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Tajima: "Perturbed Lame equation and Buslaev phase (露語)"Ukrainskii Matematicheskii Zhurnal. 50. 1673-1679 (1998)
S. Tajima:“扰动拉梅方程和 Buslaev 相(俄语)”Ukrainskii Matematicheskii Zhurnal。50。1673-1679 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Noguchi: "Recent topics in the theory of holomorphic curves"Proc.Internat.Workshop on the Value Distribution Theory and its Applications July 1996 Ed.C.-C. Yang, Gordon and Breach Scie.Publ.Amsterdam. 317-331 (1997)
J.Noguchi:“全纯曲线理论中的最新主题”Proc.Internat.关于价值分布理论及其应用的研讨会,1996 年 7 月 Ed.C.-C。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NOGUCHI Junjiro其他文献

NOGUCHI Junjiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NOGUCHI Junjiro', 18)}}的其他基金

Value distribution theory of analytic maps, Diophantine approximation and intersections of analytic cycles
解析图的值分布理论、丢番图近似和解析循环的交集
  • 批准号:
    23340029
  • 财政年份:
    2011
  • 资助金额:
    $ 15.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrated Study of Complex Analytic Structure
复杂解析结构的综合研究
  • 批准号:
    13304009
  • 财政年份:
    2001
  • 资助金额:
    $ 15.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

New development of geometric complex analysis based on L2 estimates and L2 extension theorems
基于L2估计和L2可拓定理的几何复形分析新进展
  • 批准号:
    23K12978
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Statistical models for the integrative analysis of complex biomedical images with manifold structure
具有流形结构的复杂生物医学图像综合分析的统计模型
  • 批准号:
    10590469
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Taking Snapshots of Enzymatic Reactions Using X-ray Crystallography and Spectroscopy
使用 X 射线晶体学和光谱学拍摄酶反应快照
  • 批准号:
    10623717
  • 财政年份:
    2023
  • 资助金额:
    $ 15.87万
  • 项目类别:
Geometric Methods in Complex Analysis
复杂分析中的几何方法
  • 批准号:
    RGPIN-2020-04432
  • 财政年份:
    2022
  • 资助金额:
    $ 15.87万
  • 项目类别:
    Discovery Grants Program - Individual
An upgraded optical coordinate measurement machine for the dimensional analysis of complex geometric devices
升级版光学坐标测量机,用于复杂几何装置的尺寸分析
  • 批准号:
    RTI-2023-00109
  • 财政年份:
    2022
  • 资助金额:
    $ 15.87万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了