Study on subfactors

子因素研究

基本信息

  • 批准号:
    09304017
  • 负责人:
  • 金额:
    $ 10.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 2000
  • 项目状态:
    已结题

项目摘要

There is an active group of researchers of the Jones index theory and related subfactor analysis in our country. Main members in this group studied these subject matters from a variety of different viewpoints such as Ocneanu theory, representations of loop groups, bimodules, structure ananysis on type III factors, ergodic theory, and tensor category. Three conferences were held by support of the current funding. Although a wide variety of subjects in operator theory and operator algebras was investigated by the members in the duration of the current funding, main achievements on the proposed subject are as follows : (i) Longo-Rehren subfactors (closely releted to the notion of a quantum double) and the fusion rule of relevant bimodules were clarified. (ii) A certain deformation theory for Kac algebras via various cocycles was established based on subfactor analysis, and it now becomes possible to classify low-dimensional Kac algebras. (iii) Many "subfactor versions" of structure analysis of type III factors and the notion of orbit equivalence were obtained, and structure of subfactors in type III_0 factors became quite transparent. (iv) The notion of (strong) amenability (required for classification of subfactors) was clarified in many settings such as fusion algebras and tensor categories. (v) Many realizations of Cuntz-Krieger type C^*-algebras were found via bimodule approach, and some new knowledge was added to the understanding of these algebras. (vi) The (non-commutative) Rohlin property for C^*-algebras was successfully formulated, and consequently study on automorphisms of AF and AT algebras has advanced considerably.
我国有一群活跃的琼斯指数理论研究人员和相关的子因素分析。该小组的主要成员从各种不同的观点,例如Ocneanu理论,循环组的表示,双模型,关于III型因子的结构分析,赤道理论和Tensor类别研究了这些主题。通过当前资金的支持,举行了三场会议。尽管成员在当前资助期间研究了操作者理论和操作员代数的各种受试者,但对拟议受试者的主要成就如下:(i)longo-rehren子因子(密切相关的量子双重概念)和相关bimodules的融合规则。 (ii)基于亚比例分析建立了通过各种共生的KAC代数的某些变形理论,现在可以对低维kac代数进行分类。 (iii)获得了III型因子的结构分析和轨道等效概念的许多“子因子版本”,III_0型因子中的亚比例的结构变得非常透明。 (iv)在许多情况下,例如融合代数和张量类别,阐明了(强)舒适性的概念(Summ)舒适性(子因子分类所需的概念)。 (v)通过Bimodule方法发现了Cuntz-Krieger类型C^*的许多实现,并在对这些代数的理解中添加了一些新知识。 (vi)成功制定了C^* - 代数的(非交通性的)Rohlin特性,因此研究了AF和代数的自动形态,已大大提高。

项目成果

期刊论文数量(43)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kishimoto: "Automorphisms of AT algebras with the Rohlin property"J.Operator Theory. 40. 277-294 (1998)
A.Kishimoto:“具有 Rohlin 性质的 AT 代数的自同构”J.算子理论。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kosaki and T.Sano: "Non-splitting inclusions factors of type III^0"Pacific J.Math.. 178. 95-125 (1997)
H.Kosaki 和 T.Sano:“III 型非分裂包含因子^0”Pacific J.Math.. 178. 95-125 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Danilenko: "On measure theoretical analogue of the takesaki structure theorem for type III factors "Colloquim Mathematicum. Vol.84/85. 485-493 (2000)
A.Danilenko:“关于 III 型因子的 Takesaki 结构定理的测量理论模拟”数学研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kosaki: "Type III factors and Indx Theory" ソウル国立大学Global Analogsis Research Center, 96 (1998)
H.Kosaki:“III型因素和指数理论”首尔大学全球类比研究中心,96(1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Izumi: "The structure of sectors associated Longo-Rehren inclusions I.General theory"Commun.Math.Phys.. 213. 127-179 (2000)
M.Izumi:“与 Longo-Rehren 包含物相关的扇区结构 I. 一般理论”Commun.Math.Phys.. 213. 127-179 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOSAKI Hideki其他文献

KOSAKI Hideki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOSAKI Hideki', 18)}}的其他基金

Study on operator means and related topics
算子手段及相关课题研究
  • 批准号:
    26400120
  • 财政年份:
    2014
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on operator inequalities based on various analytic methods
基于多种解析方法的算子不等式研究
  • 批准号:
    23540215
  • 财政年份:
    2011
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on operator theory and operator means
算子理论及算子手段研究
  • 批准号:
    19340035
  • 财政年份:
    2007
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of recent topics on operator algebras
算子代数近期课题研究
  • 批准号:
    14340056
  • 财政年份:
    2002
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Numerical study on periodic solution of three-body problem under inhomogeneous interaction potential
非齐次相互作用势下三体问题周期解的数值研究
  • 批准号:
    17K05146
  • 财政年份:
    2017
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reexamination of Stock Price Index
股价指数复核
  • 批准号:
    14330033
  • 财政年份:
    2002
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of recent topics on operator algebras
算子代数近期课题研究
  • 批准号:
    14340056
  • 财政年份:
    2002
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Systematic study of quantum groups from the viewpoint of operator algebras
从算子代数角度系统研究量子群
  • 批准号:
    12640199
  • 财政年份:
    2000
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
部分因子環の構造の研究
子因子环的结构研究
  • 批准号:
    09740121
  • 财政年份:
    1997
  • 资助金额:
    $ 10.11万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了