two dimensional quantum field theory and representation theory
二维量子场论与表示论
基本信息
- 批准号:09304021
- 负责人:
- 金额:$ 9.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the representions of degenerate double affine Hecke algebra H_N to characterize the space of matrix elements of vertex operators for conformal field theory under the synmetries of affine Lie algebras.1. Using the intertwing operators, we studied the structure of the standard modules induced by the parabolic subalgebras. We get condition for irreduciblity and deconposition as degenerate affine Hecke algebra H_N modules.2. We defined structure of H_N-module on quatient spaces F_N (A, B) of tensor products of representation spaces of affine Lie algebra Slm (C) . These representations are defind by using relation between K-Z operators of conformal field theory and Cherednik-Dunkle operators. And these representation spaces have deep relationship to the space of N-points vertex operaters in the conformal field theory.3. Using the resolution of integrable modules of slm, we construct the complexes of standard H_N modules which has F_N (A, B) as the head.4. Using the intertwining operators of H_N-module, we construct eigen vectors of S [E] in the F_N (A, B) .And conpute the characters of H_N-invariant space of these eigen vectors.
我们研究了退化双仿射Hecke代数H_N的表示,以表征在仿期lie代数的synmerties中,顶点算子的矩阵元素的空间用于保形场理论1。使用互动操作员,我们研究了由抛物线副总代词诱导的标准模块的结构。作为脱位仿射Hecke代数H_N模块2。我们定义了仿射lie代数SLM(C)的张量产品的高度空间f_n(a,b)上H_N模块的结构。这些表示是通过使用共形场理论的K-Z运算符与Cherednik-Dunkle运算符之间的关系来进行的。这些表示空间与共形场理论中的N点顶点操作员的空间有着深厚的关系。3。使用SLM的可集成模块的分辨率,我们构造了标准H_N模块的复合物,该模块的络合物将F_N(A,B)作为头4。使用H_N模块的交织算子,我们在f_n(a,b)中构造了s [e]的特征矢量。并结合了这些特征载体的H_n-invariant空间的字符。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Arakawa,T.Suzuki and A.Tsuchiya: "Degenerate double affine Hecke algebras and conformal field theory" Topological Field Theory,Primitive Forms and Related Topics:the pro-ceedings of the 38^<th> Taniguchi symposium,Ed.M.Kashiwara et al.,. 1-34 (1998)
T.Arakawa、T.Suzuki 和 A.Tsuchiya:“退化双仿射 Hecke 代数和共形场论”拓扑场论、本原形式及相关主题:第 38 届谷口研讨会论文集,Ed.M
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.N.Kirillov, A.Kuniba and T.Nakanish: "Skew Young diagram method in spectral decomposition of integrable lattice models II : Higher levels" Nucl.Phys.B529. 611-638 (1998)
A.N.Kirillov、A.Kuniba 和 T.Nakanish:“可积晶格模型谱分解中的斜杨图方法 II:更高水平”Nucl.Phys.B529。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Aomoto: "On elliptic product formulas for Jackson integrals associated with reduced root systems" Jour.Alg.Comb.8. 115-126 (1998)
K.Aomoto:“关于与简化根系统相关的 Jackson 积分的椭圆乘积公式”Jour.Alg.Comb.8。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Aomoto: "Derivation of q-difference equations from connection matrix for Selberg type Jackson integrals" Jour.Difference Eq.and Its Appli.4. 247-278 (1998)
K.Aomoto:“从 Selberg 型 Jackson 积分的连接矩阵导出 q 差分方程”Jour.Difference Eq.and Its Appli.4。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Arakawa,T.Suzuki and A.Tsuchiya: "Degenerate double affine Hecke algebras and conformal field theory" Topological Field Theory,Primitive Forms and Related Topics ; the pro-ceedings of the 38^<th> Taniguchi symposium,Ed.M.Kashiwara et al.,. 1-34 (1998)
T.Arakawa、T.Suzuki 和 A.Tsuchiya:《退化双仿射 Hecke 代数和共形场论》拓扑场论、本原形式及相关主题;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUCHIYA Akihiro其他文献
TSUCHIYA Akihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUCHIYA Akihiro', 18)}}的其他基金
Study of Promoting dialogue System between Victims/Bereaved families and Responsible party
促进受害人/家属与责任方对话制度的研究
- 批准号:
15K12965 - 财政年份:2015
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Construction of Conformal field theory based on Representation theory of Vertex Operator Algebra
基于顶点算子代数表示论的共形域论构建
- 批准号:
22540010 - 财政年份:2010
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Transformation of School Conflict and Construction of Education ADR in Education System Reform Period
教育体制改革时期学校冲突转化与教育ADR构建研究
- 批准号:
22730003 - 财政年份:2010
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A Sociolegal Study for Construction of School Dispute Resolution Systems
学校纠纷解决体系构建的社会法学研究
- 批准号:
19730005 - 财政年份:2007
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
On the study of two dimensional quantum field theory by the methodof representation theory
论用表示论方法研究二维量子场论
- 批准号:
18540078 - 财政年份:2006
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
- 批准号:
14204003 - 财政年份:2002
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Representation Theoretic Study of Two Dimensional Quantum Field Theory
二维量子场论的表示理论研究
- 批准号:
11440020 - 财政年份:1999
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on symmetries for automorphic forms and Borcherds products
自守形式和 Borcherds 积的对称性研究
- 批准号:
26400027 - 财政年份:2014
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularity Theory and Painleve Education-Lie Theoretical Construcion of Initial Space
奇点理论与Painleve教育-初始空间的李理论构建
- 批准号:
16540049 - 财政年份:2004
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation theory of Elliptic Quantum Groups and Deformation of W-algebra
椭圆量子群的表示论与W-代数的变形
- 批准号:
15540033 - 财政年份:2003
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research on algebraic groups and Kac-Moody groups, and their applications
代数群和Kac-Moody群的研究及其应用
- 批准号:
15540005 - 财政年份:2003
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)