Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
基本信息
- 批准号:493831-2016
- 负责人:
- 金额:$ 12.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Strategic Projects - Group
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Worldwide energy usage is on track to double from current levels to approximately 40 TW by 2050. With 80% of current global energy usage arising from fossil fuels, existing energy usage growth trends are therefore expected to exacerbate atmospheric green house gas levels and correlated climate change phenomena over the next 40 years, with ground transportation contributing to near 30% of energy usage. To address growing global energy needs, new cost effective manufacturable technologies are needed that are both environmentally safe and provide the necessary energy density for automotive transportation. However, solar energy hitting the Earth's surface exceeds that of 100 million 500 MW power plants. Hence, manufacturable solar energy nanomaterials represent a major opportunity to address rapidly growing worldwide energy demands and climate trends -- and an important manufacturing export market opportunity for Canada. However, solar energy suffers from intermittent day-night cycle power generation. Though this can be alleviated through storage mechanisms, an optimal solution resides in the direct conversion of solar energy into fuels through artificial photosynthesis. In this manner, sunlight is directly converted into hydrogen and oxygen through the photocatalytic splitting of water in tandem solar cells and associated architectures. However, the performance of current photocatalysts is well below that needed for practical automotive applications and their performance, even with the same elemental composition, varies widely based on surface morphology, carrier transport, and crystallinity. It is the goal of this proposal to develop a systematic engineering design approach to produce manufacturable photocatalytic oxide nanomaterials based on lower cost elements (rather than expensive noble metals) possessing high hydrogen fuel generation efficiencies. Upon completion of the proposal, we aim to transfer the technologies developed to our industrial partners for the greater benefit of the Canadian manufacturing industry.**************
到 2050 年,全球能源使用量有望从目前水平翻一番,达到约 40 TW。目前全球能源使用量的 80% 来自化石燃料,因此,现有能源使用增长趋势预计将加剧大气温室气体水平和相关气候变化未来 40 年,地面交通将占能源使用量的近 30%。 为了满足不断增长的全球能源需求,需要新的、具有成本效益的可制造技术,这些技术既对环境安全,又能为汽车运输提供必要的能量密度。 然而,到达地球表面的太阳能超过了1亿个500兆瓦发电厂的能量。因此,可制造的太阳能纳米材料代表着解决全球快速增长的能源需求和气候趋势的重大机遇,也是加拿大重要的制造业出口市场机会。然而,太阳能发电存在间歇性的昼夜循环发电问题。尽管可以通过存储机制来缓解这一问题,但最佳解决方案是通过人工光合作用将太阳能直接转化为燃料。通过这种方式,阳光通过串联太阳能电池和相关架构中水的光催化分解直接转化为氢气和氧气。 然而,当前光催化剂的性能远低于实际汽车应用所需的性能,而且即使元素组成相同,其性能也会因表面形态、载流子传输和结晶度而有很大差异。 该提案的目标是开发一种系统的工程设计方法,以具有高氢燃料生成效率的低成本元素(而不是昂贵的贵金属)生产可制造的光催化氧化物纳米材料。 提案完成后,我们的目标是将开发的技术转让给我们的工业合作伙伴,为加拿大制造业带来更大的利益。 *************
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bevan, Kirk其他文献
Bevan, Kirk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bevan, Kirk', 18)}}的其他基金
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2022
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2021
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Nanoengineering Interfacial and Solid-State Electrochemical Redox Devices via Computational Design and Informatics
通过计算设计和信息学的纳米工程界面和固态电化学氧化还原装置
- 批准号:
RGPIN-2019-05411 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Computational Design of Next Generation Nanoelectronic Materials
下一代纳米电子材料的计算设计
- 批准号:
418311-2012 - 财政年份:2018
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
Computational Design of Next Generation Nanoelectronic Materials
下一代纳米电子材料的计算设计
- 批准号:
418311-2012 - 财政年份:2018
- 资助金额:
$ 12.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
制造单元能力可重构的矩阵式数字孪生装配车间智能管控方法
- 批准号:52375479
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
再制造构件表面裂纹的无源无线可重构天线传感基础研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑骨组织微环境演变的力生物学驱动可增材制造骨支架优化设计
- 批准号:12211530062
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
可持续供应链视角下新能源汽车制造企业的运营策略及鲁棒性分析
- 批准号:72271141
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
基于竞争性剩余疲劳寿命的可再制造性评价研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase II: Manufacturable Implementation of Thin Glass for Next Generation Electronics Packaging
SBIR 第二阶段:下一代电子封装薄玻璃的可制造实施
- 批准号:
1951114 - 财政年份:2020
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
SBIR Phase I: Manufacturable Implementation of Thin Glass for Next Generation Electronics Packaging
SBIR 第一阶段:下一代电子封装薄玻璃的可制造实施
- 批准号:
1843230 - 财政年份:2019
- 资助金额:
$ 12.46万 - 项目类别:
Standard Grant
Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
- 批准号:
493831-2016 - 财政年份:2017
- 资助金额:
$ 12.46万 - 项目类别:
Strategic Projects - Group
Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
- 批准号:
493831-2016 - 财政年份:2017
- 资助金额:
$ 12.46万 - 项目类别:
Strategic Projects - Group
Engineering manufacturable next generation photocatalytic nanomaterials for high efficiency hydrogen fuel generation
用于高效氢燃料发电的工程可制造下一代光催化纳米材料
- 批准号:
493831-2016 - 财政年份:2016
- 资助金额:
$ 12.46万 - 项目类别:
Strategic Projects - Group