Differentiable programming for flows with discontinuities

具有不连续性的流动的可微分规划

基本信息

项目摘要

Differentiability is a highly desirable or even essential property of numerical programs for studying many practically relevant phenomena. Motivating examples include the design of spacecraft, e.g., rockets, shuttles, or re-entry vehicles, or in in--flight adaption of flight configurations, requiring the minimization of loads on the structure by the surrounding flow. Decision making in those complex fields typically relies on sensitivities of quantities of interest obtained through results of numerical simulations. Consequently, derivatives are crucial ingredients of a wide range of state of the art methods in scientific computing ranging from basic parameter sensitivity analysis, error and uncertainty quantification via nonlinear optimization under constraints given by partial differential equations to data-driven and hybrid simulation methods augmented with elements of artificial intelligence such as machine learning. Both differentiability of the models and the actual differentiation of their numerical implementations as computer programs are the subject of algorithmic differentiation (AD). AD compilers and/or run time libraries enable the (semi-)automatic differentiation of differentiable programs. The latter typically implement highly sophisticated numerical algorithms by means of hundreds of thousands of lines of source code. They typically run on massively parallel high-performance computers. Challenges in numerical software technology with a particular focus on differentiable program analysis and domain-specific program transformation need to be addressed. Hence, most real-world applications of AD require collaborative efforts by computer scientists, applied mathematicians, and engineers. This proposal brings together researchers from all three domains aiming to obtain substantial progress in differentiable programming for highly sensitive flows in extreme flow regimes where shocks appear. This proposal aims to develop a sensitivity calculus for flow regimes with discontinuities that are amendable to differential programming. To achieve this objective the expertise from all three domains has to be combined. Our results will be published as an extensible AD software solution for a range of inviscid flow simulations featuring shock structures. Corresponding program transformation techniques will be developed including suitable derivative code design patterns, which motivates the prominent, coordinating role of computer science in this project.
可不同性是数值程序的高度理想甚至基本属性,用于研究许多实际相关现象。激励的例子包括航天器的设计,例如火箭,穿梭或重新进入车辆,或在飞行配置的范围内适应,需要通过周围的流量最大程度地减少结构上的负载。在这些复杂领域的决策通常取决于通过数值模拟结果获得的一定量的敏感性。因此,在科学计算中,衍生物是从基本参数敏感性分析,误差和不确定性量化的科学计算中的各种至关重要的成分,该衍生物是通过非线性优化的基本参数敏感性分析,误差和不确定性定量,在部分差分方程给出的约束条件下,到数据驱动的和混合模拟方法,并增加了与人工智能的元素,例如人工智能的元素。模型的可不同性和其数值实现的实际差异化是计算机程序的主题(AD)。广告编译器和/或运行时间库可以实现可区分程序的(半)自动差异化。后者通常通过数十万行源代码实现高度复杂的数值算法。它们通常在大规模平行的高性能计算机上运行。数值软件技术的挑战需要特别关注可区分的程序分析和特定领域的程序转换。因此,广告的大多数实际应用都需要计算机科学家,应用数学家和工程师的合作努力。该提案汇集了来自所有三个领域的研究人员,旨在在出现冲击的极端流动方案中以高度敏感的流动方面的差异进行进展。该提案旨在为具有不连续性的流动制度开发一个灵敏度演算,这些流程是对差异编程的不连续性。为了实现这一目标,必须合并所有三个领域的专业知识。我们的结果将作为可扩展的广告软件解决方案发布,用于一系列具有冲击结构的无粘性流量模拟。将开发相应的程序转换技术,包括合适的导数代码设计模式,这激发了计算机科学在该项目中的突出,协调的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Herty其他文献

Professor Dr. Michael Herty的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Herty', 18)}}的其他基金

Basic evaluation for simulation-based crash-risk-models - multiscale modelling regarding dynamic traffic flow states
基于模拟的碰撞风险模型的基本评估 - 关于动态交通流状态的多尺度建模
  • 批准号:
    280497386
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Kinetic Models on Networks with Applications Traffic Flow and Supply Chains
具有应用流量和供应链的网络动力学模型
  • 批准号:
    79828029
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical Schemes for Coupled Multi-Scale Problems
耦合多尺度问题的数值方案
  • 批准号:
    525842915
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Random compressible Euler equations: Numerics and its Analysis
随机可压缩欧拉方程:数值及其分析
  • 批准号:
    525853336
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
New traffic models considering complex geometries and data
考虑复杂几何形状和数据的新交通模型
  • 批准号:
    461365406
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Assessment of Deep Learning through Meanfield Theory
通过平均场理论评估深度学习
  • 批准号:
    462234017
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于零质量射流的细胞重编程微流控系统的构建及其多尺度流动机理
  • 批准号:
    12332016
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目
基于遗传编程和深度强化学习算法的圆柱绕流闭环控制实验研究
  • 批准号:
    12202123
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于遗传编程和深度强化学习算法的圆柱绕流闭环控制实验研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可编程EWOD液滴微流控及切刻内切酶介导恒温扩增的单个外泌体检测与表型分析研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于可编程EWOD液滴微流控及切刻内切酶介导恒温扩增的单个外泌体检测与表型分析研究
  • 批准号:
    82172365
  • 批准年份:
    2021
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

Development of theory and application of programming based on higher-order/typed calculi
基于高阶/类型演算的编程理论和应用的发展
  • 批准号:
    15H02681
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Extending efficient reversible simulations and the methods of reversible programming
扩展高效的可逆模拟和可逆编程方法
  • 批准号:
    25730049
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Verification Techniques for Hybrid Systems based on Interval Constraint Programming and Deductive Reasoning
基于区间约束规划和演绎推理的混合系统验证技术
  • 批准号:
    25880008
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Experiments for fetal programming by embryonic ultrasound cardiography of mice
小鼠胚胎超声心动图胎儿编程实验
  • 批准号:
    24791114
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of control system design methods for hybrid systems using constraint programming
使用约束规划开发混合系统的控制系统设计方法
  • 批准号:
    23656274
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了