Exploring tunable magnet/superconductor hybrid quantum systems via spin-polarized low energy electron microscopy

通过自旋极化低能电子显微镜探索可调谐磁体/超导体混合量子系统

基本信息

项目摘要

In recent years the investigation of quantum materials has been experiencing an unprecedented acceleration, mostly due to the promise of applications in the upcoming quantum information technologies. Magnet/superconductor hybrid (MSH) systems are very promising candidates for designing new quantum materials with tunable properties. Rich new physics is expected to emerge at the interface between a superconducting substrate and an ultra-thin magnetic layer hosting non-collinear spin textures. On the one hand, it has been reported that the superconducting state of the substrate can control the magnetic phase established in the ultra-thin magnet. On the other hand, topologically protected electronic states and equal-spin triplets are predicted to be present at the hetero-interface due to the interplay between the non-collinear spin texture and the superconducting phase, allowing for the emergence of topological superconductivity and spin-polarized supercurrents.Here I propose to use low temperature spin-polarized low energy electron microscopy (SPLEEM) to investigate MSH quantum systems. The unique capabilities of SPLEEM will allow the characterization of the full 3-dimentional spin texture in the deposited magnetic thin films and multilayers with nanometer resolution as a function of temperature (below and above the superconducting critical temperature), with the aim of understanding the influence of superconductivity on the stabilized spin textures in the magnetic layers. All this will be possible by exploiting the unique capabilities of the recently installed low temperature SPLEEM at the Lawrence Berkeley National Laboratory in California, which is the only SPLEEM functioning at liquid He temperature and open for access to external users.Two different types of MSH systems will be investigated. Initially, the study will focus on MSH systems where a bulk superconductor is interfaced with magnetic ultra-thin films and multilayers. The goal of this initial phase of the project will be to discover materials systems hosting non-collinear spin textures and how temperature affects their magnetic ground state. Subsequently, I will study more complex systems, where a thin interlayer of a large spin-orbit coupling material will be inserted at the interface of the initial MSH system. The aim is to understand how the properties of the initial MSH system can be tuned by the presence of the large spin-orbit coupling interlayer.
近年来,量子材料的研究经历了前所未有的加速,这主要是由于即将到来的量子信息技术的应用前景。磁体/超导体混合(MSH)系统是设计具有可调特性的新型量子材料的非常有前途的候选者。丰富的新物理学预计将出现在超导基底和具有非共线自旋纹理的超薄磁性层之间的界面处。一方面,据报道,基底的超导状态可以控制超薄磁体中建立的磁相。另一方面,由于非共线自旋结构和超导相之间的相互作用,预计拓扑保护电子态和等自旋三重态将出现在异质界面上,从而出现拓扑超导和自旋-在这里我建议使用低温自旋偏振低能电子显微镜(SPLEEM)来研究MSH量子系统。 SPLEEM 的独特功能将允许以纳米分辨率表征沉积的磁性薄膜和多层中的完整 3 维自旋纹理作为温度(低于和高于超导临界温度)的函数,目的是了解影响磁性层中稳定自旋纹理的超导性。所有这一切都将通过利用加利福尼亚州劳伦斯伯克利国家实验室最近安装的低温 SPLEEM 的独特功能来实现,该低温 SPLEEM 是唯一在液氦温度下运行并开放给外部用户访问的 SPLEEM。 两种不同类型的 MSH 系统将被调查。最初,该研究将重点关注块体超导体与磁性超薄膜和多层膜连接的 MSH 系统。该项目初始阶段的目标是发现具有非共线自旋纹理的材料系统以及温度如何影响其磁性基态。随后,我将研究更复杂的系统,其中将在初始 MSH 系统的界面处插入大型自旋轨道耦合材料的薄夹层。目的是了解如何通过大自旋轨道耦合夹层的存在来调整初始 MSH 系统的特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Roberto Lo Conte, Ph.D.其他文献

Dr. Roberto Lo Conte, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Roberto Lo Conte, Ph.D.', 18)}}的其他基金

Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于少模光纤布拉格光栅的波长、轨道角动量模式阶数可调全光纤涡旋激光器的研究
  • 批准号:
    62305310
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可调控CTE微结构的航天器高尺寸稳定结构设计方法研究
  • 批准号:
    52372351
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
磁场可调控的Z型光催化体系的构建与反应机制研究
  • 批准号:
    62304153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
相互作用可调超冷原子气体中的光晶格的多体局域化与拓扑输运
  • 批准号:
    12374245
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
具有超强、可调光学活性的聚芴衍生物手性功能薄膜的精准构筑与应用研究
  • 批准号:
    52373122
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Tunable vector magnet for addressing spins in 2D systems
用于解决 2D 系统中自旋问题的可调谐矢量磁体
  • 批准号:
    390444-2010
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Tunable vector magnet for addressing spins in 2D systems
用于解决 2D 系统中自旋问题的可调谐矢量磁体
  • 批准号:
    390444-2010
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Development of a millimeter wave, frequency tunable gyrotron using a permanent magnet system
使用永磁体系统开发毫米波频率可调陀螺仪
  • 批准号:
    12680476
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and Application of a Frequency-Tunable, Submillimeter Wave Gyrotron
频率可调谐亚毫米波陀螺仪的研制与应用
  • 批准号:
    01044061
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for international Scientific Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了