Exploring tunable magnet/superconductor hybrid quantum systems via spin-polarized low energy electron microscopy

通过自旋极化低能电子显微镜探索可调谐磁体/超导体混合量子系统

基本信息

项目摘要

In recent years the investigation of quantum materials has been experiencing an unprecedented acceleration, mostly due to the promise of applications in the upcoming quantum information technologies. Magnet/superconductor hybrid (MSH) systems are very promising candidates for designing new quantum materials with tunable properties. Rich new physics is expected to emerge at the interface between a superconducting substrate and an ultra-thin magnetic layer hosting non-collinear spin textures. On the one hand, it has been reported that the superconducting state of the substrate can control the magnetic phase established in the ultra-thin magnet. On the other hand, topologically protected electronic states and equal-spin triplets are predicted to be present at the hetero-interface due to the interplay between the non-collinear spin texture and the superconducting phase, allowing for the emergence of topological superconductivity and spin-polarized supercurrents.Here I propose to use low temperature spin-polarized low energy electron microscopy (SPLEEM) to investigate MSH quantum systems. The unique capabilities of SPLEEM will allow the characterization of the full 3-dimentional spin texture in the deposited magnetic thin films and multilayers with nanometer resolution as a function of temperature (below and above the superconducting critical temperature), with the aim of understanding the influence of superconductivity on the stabilized spin textures in the magnetic layers. All this will be possible by exploiting the unique capabilities of the recently installed low temperature SPLEEM at the Lawrence Berkeley National Laboratory in California, which is the only SPLEEM functioning at liquid He temperature and open for access to external users.Two different types of MSH systems will be investigated. Initially, the study will focus on MSH systems where a bulk superconductor is interfaced with magnetic ultra-thin films and multilayers. The goal of this initial phase of the project will be to discover materials systems hosting non-collinear spin textures and how temperature affects their magnetic ground state. Subsequently, I will study more complex systems, where a thin interlayer of a large spin-orbit coupling material will be inserted at the interface of the initial MSH system. The aim is to understand how the properties of the initial MSH system can be tuned by the presence of the large spin-orbit coupling interlayer.
近年来,对量子材料的调查一直在经历前所未有的加速度,这主要是由于在即将到来的量子信息技术中应用的承诺。磁铁/超导体混合动力车(MSH)系统是设计具有可调特性的新量子材料的非常有前途的候选者。预计有丰富的新物理学将在超导底物和托有非旋转自旋纹理的超薄磁层之间的界面上浮出水面。一方面,据报道,底物的超导状态可以控制在超薄磁铁中建立的磁相。另一方面,由于非连续性自旋纹理与超导阶段之间的相互作用,预计受拓扑保护的电子状态和相等的自旋三重态将存在于杂型面上,从而允许拓扑超导率的出现出现,从而可以使用低温度旋转量子量子系统(i Pss)进行低温量子量子系统。 Spleem的独特功能将允许在沉积的磁性薄膜和具有纳米分辨率的多层分辨率的全3维自旋纹理中表征,这是温度的函数(在超导临界温度的高于和之上),目的是了解超导性对磁性层稳定性纺织物的影响。通过利用在加利福尼亚州劳伦斯·伯克利国家实验室(Lawrence Berkeley National Laboratory)的最近安装的低温Spleem的独特功能,这将是可能的,这是唯一在液体HE温度下运行的脾脏,并可以访问外部用户。两种类型的MSH系统将被研究。最初,该研究将重点放在MSH系统上,其中散装超导体与磁性超薄膜和多层人士连接。该项目的初始阶段的目的是发现托管非类别旋转纹理的材料系统以及温度如何影响其磁接地状态。随后,我将研究更复杂的系统,其中将在初始MSH系统的界面上插入大型自旋轨道耦合材料的薄层间。目的是了解如何通过大型自旋轨道耦合层的存在来调整初始MSH系统的性能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Roberto Lo Conte, Ph.D.其他文献

Dr. Roberto Lo Conte, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Roberto Lo Conte, Ph.D.', 18)}}的其他基金

Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

酶活动态可调的磁响应纳米杂化尿酸酶的构建及其体内抗痛风性能研究
  • 批准号:
    32371456
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于导电聚合物的太赫兹宽带吸波材料和可调器件
  • 批准号:
    62311530115
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    国际(地区)合作与交流项目
可调谐MOF-纳米线复合网络微结构增强的双频谱联用肺癌检测研究
  • 批准号:
    12374342
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
发光带隙可调的木质素基碳量子点制备及其光解水制氢的机理研究
  • 批准号:
    52376172
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Tunable vector magnet for addressing spins in 2D systems
用于解决 2D 系统中自旋问题的可调谐矢量磁体
  • 批准号:
    390444-2010
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
Development of a millimeter wave, frequency tunable gyrotron using a permanent magnet system
使用永磁体系统开发毫米波频率可调陀螺仪
  • 批准号:
    12680476
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of frequency tunable gyrotrons as high power far-infrared wave sources and their applications to far-infrared spectroscopy
高功率远红外波源频率可调陀螺仪的研制及其在远红外光谱中的应用
  • 批准号:
    12558045
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Frequency Tunable, Submillimeter Wave Gyrotrons and Their Application to Scattering Measurement of Plasma
频率可调谐亚毫米波回旋管的研制及其在等离子体散射测量中的应用
  • 批准号:
    01880001
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了