Defect chemistry engineering and thermal treatment on dislocation mechanics in SrTiO3

SrTiO3 位错力学的缺陷化学工程和热处理

基本信息

项目摘要

The properties of modern functional oxides can be tailored by selectively changing the defect chemistry, i.e. by introducing point defects. This usually involves the introduction of charges into the crystal lattice. An alternative approach to modifying functional properties is the introduction of dislocations. Dislocations are line defects, which can be strongly charged in oxides, thus interacting with point defects. In recent years, this new approach has attracted increasing research interest. Promising proofs-of-concept have shown that the functional properties of oxides, such as electrical conductivity, thermal conductivity, and superconductivity, can be selectively influenced by changing the dislocation structure. Ceramics are typically processed at high temperatures, with the point defects present being frozen far from thermodynamic equilibrium during cooling. For this reason, interactions inevitably occur between the introduced dislocations and the numerous point defects in ceramic oxides. Therefore, the following scientifically relevant questions arise:1) Are the mechanical properties, such as plasticity and cracking behavior, altered by the interaction of dislocations and point defects?2) How do point defects interact with previously introduced dislocations as a function of temperature and heating/cooling rate, the latter affecting thermodynamic equilibrium?3) What is the contribution of the electrostatic fields of line and point defects to solid solution hardening? How does a change in the defect chemistry of the sample affect dislocation mobility?In this project, we aim to answer these questions and shed new light on the thermal stability of dislocations and its influence on mechanical properties, which is crucial for dislocation-controlled functionality as well as mechanical reliability of components. For this purpose, single-crystalline SrTiO3 (with different conditions of defect chemistry) will be used as a reference material and nanong-/micromechanical tests will be performed at different temperatures to study 1) dislocation nucleation and multiplication modified by point defects. Furthermore, 2) the interaction between the generated dislocations and point defects affecting the dislocation motion will be investigated. In addition to plasticity, the cracking behavior (crack formation and propagation) of the materials will also be studied, taking into account the dislocation behavior.
现代功能氧化物的特性可以通过选择性更改缺陷化学(即引入点缺陷)来量身定制。这通常涉及将电荷引入晶格。修改功能特性的另一种方法是引入位错。位错是线缺陷,可以在氧化物中强烈充电,从而与点缺陷相互作用。近年来,这种新方法吸引了越来越多的研究兴趣。有前途的概念证明表明,氧化物的功能特性,例如电导率,导热率和超导性,可以通过改变位错结构来选择性地影响。陶瓷通常在高温下进行处理,而在冷却过程中,存在点缺陷远离热力学平衡。因此,在引入的位错和陶瓷氧化物中的众多点缺陷之间不可避免地发生相互作用。因此,出现以下科学相关问题:1)通过位错和点缺陷的相互作用改变了机械性能,例如可塑性和开裂行为?2)点缺陷如何与先前引入的脱位相互作用,作为温度和温度和加热/冷却速率,后者影响热力学平衡?3)线和点缺陷对固体溶液硬化的静电场和点缺陷的贡献是什么?样品缺陷化学的变化如何影响脱位迁移率?在这个项目中,我们旨在回答这些问题,并为位错的热稳定性及其对机械性能的影响提供新的启示,这对于脱位控制功能至关重要以及组件的机械可靠性。为此,单晶SRTIO3(具有不同缺陷化学条件)将用作参考材料,并将在不同的温度下进行研究。此外,2)将研究影响脱位运动的生成位错和点缺陷之间的相互作用。除了可塑性外,还要考虑到脱位行为,还将研究材料的开裂行为(裂纹形成和传播)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Xufei Fang其他文献

Dr.-Ing. Xufei Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Xufei Fang', 18)}}的其他基金

Understanding stress-oxidation interaction on grain boundary failure: in situ microscale crack propagation experiments
了解应力-氧化相互作用对晶界失效的影响:原位微尺度裂纹扩展实验
  • 批准号:
    418649505
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

战略研究类:“双碳”目标下能源化学工程学科发展战略研究
  • 批准号:
    22342019
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    专项基金项目
战略研究类:热化学反应工程科学与技术发展研究
  • 批准号:
    22242018
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    专项基金项目
基于核酸导电水凝胶电化学传感器和光遗传工程细胞的糖尿病诊疗一体化平台
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于应力生长的褶皱型二维材料大面积制备与特性研究
  • 批准号:
    52102179
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目
光化学与电化学工程战略研讨
  • 批准号:
    22142021
  • 批准年份:
    2021
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Establishing and Optimizing a Prime Editing Method in Neurons for Treatment of Rett Syndrome
建立和优化用于治疗 Rett 综合征的神经元素数编辑方法
  • 批准号:
    10607549
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
  • 批准号:
    10587508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Discovery and development of apoE4 correctors for the treatment of Alzheimer's disease
发现和开发用于治疗阿尔茨海默病的 apoE4 校正剂
  • 批准号:
    10901029
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Tissue Engineering Strategies to Revitalize Allografts
振兴同种异体移植物的组织工程策略
  • 批准号:
    10830613
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Hydrogels with Tunable Stress Relaxation and Mobility for Enhancing Articular Cartilage Regeneration
具有可调应力松弛和活动能力的水凝胶可增强关节软骨再生
  • 批准号:
    10750831
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了