Viscosity solutions of nonlinear partial differential equations and a game-theoretic approach

非线性偏微分方程的粘度解和博弈论方法

基本信息

  • 批准号:
    16K17635
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2016
  • 资助国家:
    日本
  • 起止时间:
    2016-04-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrete game theory and applications in nonlinear partial differential equations
离散博弈论及其在非线性偏微分方程中的应用
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matsuda Momo;Morikuni Keiichi;Sakurai Tetsuya;Qing Liu
  • 通讯作者:
    Qing Liu
A nonlinear parabolic equation with discontinuity in the highest order and applications
最高阶不连续的非线性抛物线方程及其应用
  • DOI:
    10.1016/j.jde.2015.09.022
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Robin Ming Chen;Qing Liu
  • 通讯作者:
    Qing Liu
Weakly coupled systems of fully nonlinear parabolic equations in the Heisenberg group
海森堡群中完全非线性抛物型方程的弱耦合系统
  • DOI:
    10.1016/j.na.2018.04.008
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Liu;X. Zhou
  • 通讯作者:
    X. Zhou
Convexity preserving properties for Hamilton-Jacobi equations in geodesic spaces
测地空间中 Hamilton-Jacobi 方程的凸性保持性质
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中安淳;中安淳;中安淳;中安淳;中安淳;Atsushi Nakayasu
  • 通讯作者:
    Atsushi Nakayasu
Large exponent behavior of power-type evolution equations and applications
幂型演化方程的大指数行为及应用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Q. Liu
  • 通讯作者:
    Q. Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LIU QING其他文献

LIU QING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Geometry of Special Lagrangian equation
特殊拉格朗日方程的几何
  • 批准号:
    22K13909
  • 财政年份:
    2022
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Analysis on Qualitative Properties and Singularities of Solutions to k-Hessian Equation and k-curvature Equation
k-Hessian方程和k-曲率方程解的定性性质和奇异性分析
  • 批准号:
    22K03386
  • 财政年份:
    2022
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
完全非線形偏微分方程式とその自由境界問題に対する理論と応用
完全非线性偏微分方程及其自由边界问题的理论与应用
  • 批准号:
    22K13944
  • 财政年份:
    2022
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
制御問題に由来する非線形偏微分方程式系の弱KAM理論を用いた数学解析
利用弱KAM理论对非线性偏微分方程系统的控制问题进行数学分析
  • 批准号:
    20J10824
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
完全非線形放物型方程式の粘性解理論の新展開
全非线性抛物型方程粘度解理论的新进展
  • 批准号:
    20K14340
  • 财政年份:
    2020
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了