Research of the structure of unbounded viscosity solutions to semilinear degenerate elliptic equations in R^N

R^N中半线性简并椭圆方程无界粘性解的结构研究

基本信息

  • 批准号:
    16540151
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

Consider a following semilinear degenerate partial differential equation:-g(|x|)Δu + u|u|^p - f(|x|) = 0 ∈ R^N (1)where g is a nonnegative plynominal of degree ell > 2 in a neighborhood of a point at infinity and f is also a plynominal in a neighborhood of a point at infinity. Moreover, assume g holds bounded zero points. Hence, the differential equation is a degenerate tyle. We don't impose the boundary condition to solutions of (1) in the neighborhood of the point infinity. Then, It is possible to exist many continuous viscosity solutions.Our purpose of this research was to analyze the structure of the set of many continuous viscosity solutions of (1). The results of our research are as follows. We the first showed that an inequality of relations of N and k is a necessary and sufficient condition to decide whether radically symmetric solutions are infinite or single where k is a coefficient of a maxima order of f. Moreover, we proved that a set of many radically symmetric solutions is homeomorphic to R^1. The secondly, under the assumptions N = 2 and that lower order terms of polynominal of f, g do not exist, we found the condition to judge whether there exists non radically symmetric solution or not. If non-radically symmetric solution exists we also showed how many non-radically symmetric solutions there were. That is, We showed that the number of solutions was different depending on the value that related to l, p, k.
考虑以下半线性偏二方方程:-g(| x |)ΔU + u | u | u | u | u | u | u | u | u | u | u | u | u | u | u | 't将边界条件施加到点无穷大的邻居引擎盖中的解决方案。 )其次,在n = 2的假设下,f的多项式术语不存在,我们发现了是否存在非根本对称的溶液,我们也表明了如何采用的soluti soluti ons。我们显示的解决方案的数量不同,具体取决于与L,P,K的值。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-existence of non radially symmetric viscosity solutions to semilinear degerate elliptic equations with radially symmetric cofficents in R^2.
R^2 中具有径向对称坐标的半线性退化椭圆方程不存在非径向对称粘度解。
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroki Sato;C.Li;M.Oichi;Sin-Ei Takahasi;Kenji Maruo
  • 通讯作者:
    Kenji Maruo
Asymptotic behavior of unbounded radially symmetric solutions of semilinear degerate elliptic equations.
半线性退化椭圆方程的无界径向对称解的渐近行为。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshiyuki Hino;Satoru Murakami;Kenji Maruo
  • 通讯作者:
    Kenji Maruo
Non-existence of non radically symmetric viscosity solutions to semilinear degerate elliptic equations with radically symmetric coefficients in R2.
R2 中具有激进对称系数的半线性退化椭圆方程不存在非激进对称粘度解。
Non-existence of non-radially symmetric solutions to semilinear degenerate elliptic equations with radially symmetric coefficients in R^2
R^2 中具有径向对称系数的半线性简并椭圆方程不存在非径向对称解
Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature
Bence-Merriman-Osher 平均曲率运动算法的距离函数方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARUO Kenji其他文献

MARUO Kenji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARUO Kenji', 18)}}的其他基金

Research in viscosity solutions using the method of Functional Analysis.
使用泛函分析方法研究粘度解决方案。
  • 批准号:
    10640169
  • 财政年份:
    1998
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On symmetric and radial viscosity solutions for elliptic partial differential equation.
椭圆偏微分方程的对称和径向粘度解。
  • 批准号:
    09640187
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Protein nanoclusters for delivery of high concentration therapeutic antibodies
用于递送高浓度治疗性抗体的蛋白质纳米簇
  • 批准号:
    8836948
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
Automated POC Extraction of Sputum-Borne Bacterial Nucleic Acids In the Clinic
临床上自动 POC 提取痰传播细菌核酸
  • 批准号:
    8758757
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
Synthesis, Characterization, and Evaluation of Polymeric Tissue Lubricants
聚合物组织润滑剂的合成、表征和评估
  • 批准号:
    8886944
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
Randomized trial of inhaled nitric oxide to treat acute pulmonary embolism
吸入一氧化氮治疗急性肺栓塞的随机试验
  • 批准号:
    8725221
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
Randomized trial of inhaled nitric oxide to treat acute pulmonary embolism
吸入一氧化氮治疗急性肺栓塞的随机试验
  • 批准号:
    8883684
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了