A study on prehomogeneous vector spaces and extensions of algebraic number fields
预齐次向量空间与代数数域的延拓研究
基本信息
- 批准号:16540015
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let V be the space of pairs of ternary quadratic forms, The group G=GL(3)XGL(2) acts on V and (G, V) is a prehomogeneous vector space of dimension 12. This space was closely related to quartic field extensions by D.J.Wright and A.Yukie's work. To be more precise, the set of rational equivalence classes of semi-stable rational points corresponds almost one to one to the set of quartic field extensions. However, the set of integral equivalence classes of semi-stable integral points was not investigated. We have two number theoretic subjects related to this space. One is the lattice L of pairs of integral ternary quadratic forms. The other is the lattice L' of pairs of integral symmetric matrices of degree 3. By the result of J.Morales, the set of integral equivalence classes of semi-stable points in L' is closely related to the 2-torsion subgroup of the ideal class groups of cubic fields. On the other hand, the set of integral equivalence classes of semi-stable points in L was not known. As the result of this research, we have proved that it is closely related to the set of isomorphism classes of orders of quartic fields. Just before the submission of the result to a journal, we know that the same result was published by M.Bhuargava in late 2004.Now let n be a non zero integer, and denote by L(n) and L'(n) the set of points x in L with Δ (x)=n, and the set of points x in L' with Δ (x)=n, respectively. We denote by L(1,n), L(2,n), L(3,n), L'(1,n), L'(2,n) and L'(3,n) the subset of L(n) or L'(n) corresponding to quartic fields with 4, 2 and 0 real infinite primes, respectively. Then we have a conjecture that there exist certain relations between the 6 zeta functions whose coefficients are the numbers of integral equivalence classes of L(i, n)'s and L'(j, 256)'s. Some special cases of the conjecture are proved by this research. I gave a lecture on this result at the workshop "Rings of Low Rank" held at Leiden University in June, 2006.
令V为三元二次形式的空间,G = GL(3)XGL(2)对V和(G,V)作用是维度12的均匀矢量空间。此空间与D.J.Wright和A.yukie的工作与四分之一的场扩展密切相关。更确切地说,半稳定有理点的一组有理等效类别几乎对应于四分之一场扩展。但是,未研究半稳定积分点的一组积分等效类别。我们有两个与此空间相关的数字理论主题。一个是成对的成对三元二次形式的晶格。另一个是第3度的一对成对的对称材料对。根据J.Morales的结果,L'中半稳定点的一组积分等效类别与理想的立方场的理想类别组的2个小数亚组密切相关。另一方面,L中半稳定点的一组积分等效类别尚不清楚。作为这项研究的结果,我们规定它与四分之一领域的同构类别类别密切相关。在结果提交期刊之前,我们知道M.Bhuargava在2004年底发表了相同的结果。我们用l(1,n),l(2,n),l(3,n),l'(1,n),l'(2,n)和l'(3,n)分别分别为4、2和0真实的无限次数。然后,我们有一个猜想,即6个Zeta函数之间存在某些关系,其系数是L(i,n)'s and L'的积分等效类的数量(j,j,256)。这项研究证明了一些猜想的特殊情况。我在2006年6月在莱顿大学举行的“低级戒指”研讨会上就此结果进行了演讲。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAGAWA Jin其他文献
NAKAGAWA Jin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAGAWA Jin', 18)}}的其他基金
Investigation of prehomogeneous vector spaces and ideal class groups of algebraic number fields
预齐次向量空间和代数数域理想类群的研究
- 批准号:
12640018 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of zeta functions associated with prehomogeneous vector spaces
与预齐次向量空间相关的 zeta 函数的研究
- 批准号:
10640014 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Distribution of units of an algebraic number field modulo rational primes
代数数域模有理素数的单位分布
- 批准号:
18540056 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kac-Moody Lie algebra and Hilbert modular forms
Kac-Moody 李代数和希尔伯特模形式
- 批准号:
14540022 - 财政年份:2002
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the arithmetic discontinuous groups
算术不连续群的研究
- 批准号:
14540008 - 财政年份:2002
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Distribution of units of an algebraic number field from the viewpoint of class field theory and analytic number theory
从类域论和解析数论的角度看代数数域的单位分布
- 批准号:
13640049 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shimara Cerresponchence of Hilbort modular forms
希尔伯特模块化形式的 Shimara Cerresponchence
- 批准号:
09640028 - 财政年份:1997
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)