Research on ideal class groups of algebraic number fields and number theoretic functions and its applications
代数数域和数论函数的理想类群研究及其应用
基本信息
- 批准号:16540007
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to develop the fundamental theory of ideal class groups of algebraic number fields further, especially taking account of Iwasawa theory. Though we did not find out a theoretical behavior of p-ambiguous ideal class groups in the first year of this research, we verified that our estimate on the density of real quadratic fields whose Iwasawa invariants for p=3 are all zero is very near to the conjectural ratio obtained by modifying Cohen-Lenstra Heuristics on class numbers. As compared with the case p>3 in which known estimates are too far from the conjectural one, our analysis is interesting. Next year, we showed that the density of real quadratic fields whose Iwasawa invariants for p=2 are all zero is zero. This is also interesting, because the density for p=3 is more than 0.7 by our previous result and the one for p>3 is conjectured to be positive. From that time to the last year of this research, we had an opportunity to have a joint research with Dr. Gen Yamamoto (Tokyo Denki University) and determined all real abelian 2-extension fields whose Iwasawa invariants for p=2 are all zero, by using genus theory and the theory of central extensions. The results obtained in this research are presented in some of conferences like as Korea-Japan Number Theory Seminar and ICM2006. Though we did not get a satisfying result about mutual application between number theory and combinatorial theory unfortunately, we played an important role in posing and solving common problems in both fields by organizing mini conferences where researchers in both fields gathered
这项研究的目的是进一步发展代数数字字段的理想阶级群体的基本理论,尤其是考虑到伊瓦泽理论。尽管在这项研究的第一年,我们没有发现P漫不经心的理想班级组的理论行为,但我们验证了我们对真正的二次领域的密度的估计,其iWasawa不变性p = 3的iWasawa不变性的全部零是非常零,即通过修改Cohen-lenstra-lenstra-lenstra Hearuristics在类别上获得的构想比率。与p> 3相比,已知估计值离猜想太远,我们的分析很有趣。明年,我们表明,iWasawa不变的p = 2的真实二次场的密度为零。这也很有趣,因为我们以前的结果的p = 3密度大于0.7,并且p> 3的密度猜想为正。从那时到这项研究的最后一年,我们都有机会与山本博士(Tokyo denki University)进行联合研究,并确定了所有真正的Abelian 2扩展领域,其iWasawa的iWasawa不变性p = 2都是零,都是使用属理论和中央理论。在这项研究中获得的结果在某些会议中提出,例如韩国数字理论研讨会和ICM2006。尽管不幸的是,我们对数字理论与组合理论之间的相互应用并没有获得令人满意的结果
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On certain real abelian fields with λ2=μ2= v2=0
在某些实交换域上 λ2=μ2= v2=0
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Hisaaki Fujita;Yosuke Sakai;Hisao Taya
- 通讯作者:Hisao Taya
λ_2=μ_2=ν_2=0となる実アーベル2-拡大体について
关于实阿贝尔 2 扩展域,使得 λ_2=μ_2=ν_2=0
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:寺井直樹;吉田健一;田谷 久雄
- 通讯作者:田谷 久雄
An algorithm for computing ideal class groups and unit groups (Japanese)
计算理想班级群和单元群的算法(日语)
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:寺井直樹;吉田健一;田谷 久雄;Hisao Taya;Hisao Taya;Hisao Taya;Ryoh Fuji-Hara;Hisao Taya
- 通讯作者:Hisao Taya
Spherical 5-designs obtained from finite unitary groups
从有限酉群获得的球形 5 设计
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Mikhail Klin;Akihiro Munemasa;Mikhail Muzychuk and Paul-Hermann Zieschang;Mutsuo Oka;Akihiro Munemasa
- 通讯作者:Akihiro Munemasa
Hyperplane partitions and difference systems of sets
- DOI:10.1016/j.jcta.2006.03.014
- 发表时间:2006-11
- 期刊:
- 影响因子:0
- 作者:R. Fuji-Hara;A. Munemasa;V. Tonchev
- 通讯作者:R. Fuji-Hara;A. Munemasa;V. Tonchev
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAYA Hisao其他文献
TAYA Hisao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
$ 1.79万 - 项目类别:
Discovery Projects
Thin families of real quadratic fields with large class numbers
具有大类数的实二次域的薄族
- 批准号:
494415-2016 - 财政年份:2016
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
Optimization of the experimental design by the determinant formula of the relative class numbers of cyclotomic field
利用分圆域相对类数行列式优化实验设计
- 批准号:
16K12395 - 财政年份:2016
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Distribution of prime factors of the class numbers of prime-power cyclotomic fields
素幂分圆域类数的素因子分布
- 批准号:
26400020 - 财政年份:2014
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Class numbers for number fields and the hilbert class field
数字字段的类编号和希尔伯特类字段
- 批准号:
361854-2009 - 财政年份:2010
- 资助金额:
$ 1.79万 - 项目类别:
Postgraduate Scholarships - Doctoral