Global study of functional equations and special functions
函数方程和特殊函数的全局研究
基本信息
- 批准号:15540212
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.For Painleve transcendents of I, II, IV types, we estimated the growth order. The results are as follows : P_I=5/2 for I ; 3/2【less than or equal】P_<II>【less than or equal】3 for II ; and 2【less than or equal】P_<IV>【less than or equal】4 for IV.2.We proved the Painleve property for all Painleve equations.3.We considered solutions of the third and the fifth Painleve equations on the universal covering space, and obtained some estimates for the growth order.4.We obtained a lower estimate for the growth order of solutions of the first Painleve hierarchy, and also estimated the frequency of poles and α-points of them.5.We presented a series of systems of differential equations which is equivalent to the first Painleve hierarchy, and proved the Painleve property.6.We estimated the growth order of solutions of Riccati equations with doubly periodic coefficients.
1.对于I,II,IV类型的Painleve超然,我们估计了生长顺序。结果如下:i的p_i = 5/2; 3/2 [小于或相等] p_ <ii> [小于或相等] 3; and 2 [less than or equal] P_<IV>[less than or equal] 4 for IV.2.We provided the Painleve property for all Painleve equations.3.We considered solutions of the third and the fifth Painleve equations on the universal covering space, and obtained some estimates for the growth order.4.We obtained a lower estimate for the growth order of solutions of the first Painleve hierarchy, and also estimated the frequency of poles and α-points of它们。5。我们提出了一系列的微分方程系统,这些系统等同于第一个Painleve层次结构,并提供了Painleve的性质。6。我们估计了具有双重周期系数的Riccati方程解决方案的增长顺序。
项目成果
期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shun Shimomura: "On the number of poles of the first Pain leve transcendents and higher order analogues II"数理解析研究所講究録. 13 16. 13-18 (2003)
下村俊:“关于第一级超越级和高阶类似物的极数 II”数学科学研究所 Kokyuroku. 13 16. 13-18 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Meromorphic solutions of Riccati differential equations with doubly periodic coefficients
具有双周期系数的Riccati微分方程的亚纯解
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:G.Chen;H.Enomoto 他;K.Ota;S.Shimomura;S.Shimomura
- 通讯作者:S.Shimomura
Shun Shimomura: "Nevanlinna理論の微分方程式への応用"神戸大学理学部数学教室. 89 (2003)
Shun Shimomura:“Nevanlinna 理论在微分方程中的应用”神户大学理学院数学系 89(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Growth of modified Painleve transcendents of the fifth and the third kind
第五类和第三类改进的Painleve超越者的生长
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Shun Shimomura;Shun Shimomura;Shun Shimomura
- 通讯作者:Shun Shimomura
Shun Shimomura: "Growth of the first, the second and the fourth Pain leve transcendents"Math.Proc.Camb.Phil.Soc.. 134. 259-269 (2003)
Shun Shimomura:“第一、第二和第四疼痛级别超越者的成长”Math.Proc.Camb.Phil.Soc.. 134. 259-269 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMOMURA Shun其他文献
SHIMOMURA Shun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMOMURA Shun', 18)}}的其他基金
Global study of nonlinear special functions and its application
非线性特殊函数的全局研究及其应用
- 批准号:
22340037 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analytic study of Painleve equations and a nelated clans of equation
Painleve方程及相关方程族的解析研究
- 批准号:
17340050 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global study on analytic solutions of functional equations
函数方程解析解的全局研究
- 批准号:
13640221 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
a study of special functions defined by functional equations
对函数方程定义的特殊函数的研究
- 批准号:
11640212 - 财政年份:1999
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Development of a novel multipurpose model to propagate and study the tick transmission cycle of relapsing fever spirochetes from Eurasia.
开发一种新型多用途模型,用于繁殖和研究欧亚大陆回归热螺旋体的蜱传播周期。
- 批准号:
10651550 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Phase Transitions in Chromatin Organization that cause Cancer Progression
导致癌症进展的染色质组织的相变
- 批准号:
10572860 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
A US-UK Collaborative Study of the Health of Children Born From In Vitro Fertilization: From Conception Through Young Adulthood
美英合作研究体外受精出生的儿童的健康状况:从受孕到成年
- 批准号:
10749238 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Structural Racism, Pharmacy Closures and Disparities in Medication Adherence Among Older Adult Medicare Part-D Beneficiaries
结构性种族主义、药房关闭以及老年人医疗保险 D 部分受益人的药物依从性差异
- 批准号:
10568717 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Mechanisms of septin-actin cytoskeletal crosstalk
septin-肌动蛋白细胞骨架串扰的机制
- 批准号:
10677181 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别: