Algebraic group actions and the structure of affine algebraic varieties

代数群作用和仿射代数簇的结构

基本信息

项目摘要

1.Linearization ProblemWe have had some results on the Cancellation Problem which is closely related to the Linearization Problem.(1)There exists an infinite dimensional family of affine pseudo-planes without cancellation property. Furthermore, tom Dieck surfaces are characterized as affine pseudo-planes with nontrivial actions of an algebraic torus.(2)The kernel of a triangular derivation with a slice is a polynomial ring.2.Generalized Jacobian Problem(1)We studied the Jacobian Problem for smooth affine surfaces with A^1-fibrations, especially, affine pseudo-planes. We succeeded in making clear of the structure of affine pseudo-planes to some extent with joint work with R.V.Gurjar and P.Russell, but could not resolve the Generalized Jacobian Problem for affine pseudo-planes.(2)Miyanishi showed that the Generalized Jacobian Problem for affine pseudo-planes has an affirmative answer if they satisfy the generalized Sard property.
1.线性化问题我们在与线性化问题密切相关的消除问题上取得了一些成果。(1)存在一个无限维仿射伪平面族,不具有消除性质。此外,Tom Dieck曲面被描述为具有代数环面非平凡作用的仿射伪平面。(2)切片三角导数的核是多项式环。2.广义雅可比问题(1)我们研究了雅可比问题对于具有 A^1 纤维的光滑仿射表面,尤其是仿射伪平面。我们与R.V.Gurjar和P.Russell合作,在一定程度上成功地阐明了仿射伪平面的结构,但未能解决仿射伪平面的广义雅可比问题。(2)Miyanishi证明了广义雅可比问题如果仿射伪平面满足广义 Sard 性质,则它们的问题得到肯定的答案。

项目成果

期刊论文数量(91)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant classification of Gorenstein open log del Pezzo surfaces with finite group actions
具有有限群作用的 Gorenstein 开对数 del Pezzo 曲面的等变分类
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Miyanishi;De-Qi Zhang
  • 通讯作者:
    De-Qi Zhang
R.V.Gurjar, M.Miyanishi: "Automorphisms of affine surfaces with A^1-fibrations"Michigan Math.J.. (2004)
R.V.Gurjar、M.Miyanishi:“A^1-fibrations 的仿射曲面的自同构”Michigan Math.J.. (2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Affine pseudo-converings of algebraic surfaces
代数曲面的仿射伪转换
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kambayashi;M.Miyanishi;M.Miyanishi
  • 通讯作者:
    M.Miyanishi
The additive group actions on Q-homology planes
Q-同调平面上的加性群作用
Recent developments in affine algebraic geometry
仿射代数几何的最新进展
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUDA Kayo其他文献

MASUDA Kayo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUDA Kayo', 18)}}的其他基金

Affine fibrations on algebraic varieties and algebraic group actions
代数簇上的仿射纤维和代数群作用
  • 批准号:
    15K04831
  • 财政年份:
    2015
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The structure of affine algebraic varieties and the additive group actions
仿射代数簇的结构和加性群作用
  • 批准号:
    22540059
  • 财政年份:
    2010
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The structure of affine algebraic varieties and the Linearization Problem
仿射代数簇的结构和线性化问题
  • 批准号:
    18540045
  • 财政年份:
    2006
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

The Makar-Limanov invariant and the Zariski cancellation problem
Makar-Limanov 不变量和 Zariski 取消问题
  • 批准号:
    465135-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.73万
  • 项目类别:
    University Undergraduate Student Research Awards
The cancellation problem in affine algebraic geometry
仿射代数几何中的抵消问题
  • 批准号:
    347482-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Postgraduate Scholarships - Master's
The cancellation problem in affine algebraic geometry
仿射代数几何中的抵消问题
  • 批准号:
    347482-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Postgraduate Scholarships - Master's
Research of the cancellation problem in affine algebraic geometry
仿射代数几何抵消问题的研究
  • 批准号:
    16540016
  • 财政年份:
    2004
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Control Technology of Frequency Common Problem of Ultra Wideband(UWB) Communications Systems
超宽带(UWB)通信系统频率通病控制技术研究
  • 批准号:
    15360202
  • 财政年份:
    2003
  • 资助金额:
    $ 1.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了