Bacterial trapping near topographic surfaces under shear flow

剪切流下地形表面附近的细菌截留

基本信息

项目摘要

Motile bacteria, such as Escherichia coli (E. coli), colonize surfaces, where they form hazardous biofilms and cause biofouling. When reaching the surface, they first need to be trapped by physical mechanisms, which then promotes their irreversible attachment to the surface through chemical bonding. Despite much insight, near-surface trapping of E. coli is still a poorly understood complex process, which is determined by E. coli’s run-and-tumble motility and physical conditions, such as shear flow and the surface topography. However, controlling near-surface trapping is essential for medical and biotechnological applications, for example, for preventing biofilms and biofouling but also for using bacteria as drug carriers to target disease sites such as malignant tumors. Therefore, the Indian and German groups join forces and use their complementary expertises to carry out a comprehensive simulation analysis in order to explore how physical conditions can be used to control the trapping of E. coli in shear flow near surfaces with different topography.We will perform a step-by-step analysis of the complex problem and heavily rely on a realistic model E. coli developed earlier by the Indian project leader. It will be used for a thorough preparatory analysis of the run-and-tumble motion in the bulk. In parallel, the German group will implement the model E. coli in a code based on the method of Multi-Particle Collision Dynamics, which will enable us to simulate fluid flows around the bacterium near surfaces with varying topography. Sharing the code between both groups, we will thoroughly analyze how a motile E. coli becomes trapped near a surface either in a quiescent fluid or under shear flow and thereby clarify contradicting observations. Our foci will be on the role of flagellar dynamics during runs and tumbles including polymorphism, which has so far been not resolved in any of the reported experimental studies on surface trapping, and also on the role of rheotaxis and Jeffery orbits for the bacterial dynamics. Finally, we will model surfaces with non-planar topography and investigate situations related to the control of biofouling and targeted drug deposition.
流动细菌,例如大肠杆菌(大肠杆菌),整体表面,整个形式的生物膜并引起生物污染物,然后通过化学结合促进其对表面的不可逆转。尽管如此,这是由E.跑步运动和物理状况(例如剪切流和表面形状)确定的,控制近表面陷阱对于医学和生物技术应用至关重要,但也用于使用细菌诸如恶性肿瘤之类的靶向疾病的载体。通过对复杂问题进行分步分析,并严重依赖于印度项目领导者开发的大肠杆菌。组将基于熔体粒子碰撞动力学的代码中的大肠杆菌,这将使我们能够模拟细菌neal的液体。液体或低水平的观察结果是矛盾的。 ES具有非平面地形图,并研究与控制生物污染和靶向药物沉积有关的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Holger Stark其他文献

Professor Dr. Holger Stark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Holger Stark', 18)}}的其他基金

How hydrodynamics influences the collective motion of microswimmers: A particle-based simulation study
流体动力学如何影响微型游泳者的集体运动:基于粒子的模拟研究
  • 批准号:
    254465319
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Collective motion of model microorganisms in Poiseuille flow
泊肃叶流中模型微生物的集体运动
  • 批准号:
    214525933
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling the Locomotion of the African Trypanosome
模拟非洲锥虫的运动
  • 批准号:
    193560768
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Locomotion of Microorganisms with the help of Flagella: The African Trypanosome
微生物在鞭毛的帮助下运动:非洲锥虫
  • 批准号:
    27767510
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Theoretische Physik
理论物理
  • 批准号:
    5265464
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Dynamic wetting on deforming substrates, elastic sheets, and under evaporation: A study with the boundary element method
变形基材、弹性片材和蒸发下的动态润湿:边界元法研究
  • 批准号:
    505839720
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
An in silico model of the African trypanosome: Moving in complex environments
非洲锥虫的计算机模型:在复杂环境中移动
  • 批准号:
    504947458
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

KAT8上调组蛋白H3乙酰化修饰水平促进中性粒细胞胞外诱捕网形成介导ARDS进展的机制研究
  • 批准号:
    82360374
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
缺氧诱导的游离线粒体DNA介导巨噬细胞胞外诱捕网形成促进肝癌转移的作用机制研究
  • 批准号:
    82373070
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
BMSC外泌体调控中性粒细胞胞外诱捕网形成减轻脂肪肝肝移植缺血再灌注损伤的机制研究
  • 批准号:
    82300750
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于组蛋白巴豆酰化修饰探讨IL-36β调控中性粒细胞胞外诱捕网形成促进溃疡性结肠炎发展的新机制
  • 批准号:
    82360113
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Effects of transverse spin and chirality of light by particles trapping near the evanescent field
倏逝场附近捕获的粒子对光的横向自旋和手性的影响
  • 批准号:
    24K17626
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trapping and Watching Biomolecular Complexes near Nanopores
捕获和观察纳米孔附近的生物分子复合物
  • 批准号:
    DP160102836
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Nano-optics: plasmonics, near-field imaging and optical trapping for applications to solar cells and biology
纳米光学:等离激元、近场成像和光捕获在太阳能电池和生物学中的应用
  • 批准号:
    25205-2010
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Dynamics of the Inner Radiation Belt Near the Trapping Limit
接近俘获极限的内辐射带动力学
  • 批准号:
    1455470
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了