Detecting Correspondences between Video Image Frames and Upgrading Scene Analysis Using Them
检测视频图像帧之间的对应关系并使用它们升级场景分析
基本信息
- 批准号:15500113
- 负责人:
- 金额:$ 2.43万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.Correspondence detection between imagesWe proposed new methods for automatically extracting feature points in two images and automatically detecting correspondences between them, combining voting schemes based on geometric constraints and global consistency conditions. We supplemented them by devising a technique for generating denser feature correspondences using template matching and a technique for detecting mismatches using tentative 3-D reconstruction.2.Separation of moving objects in video imagesWe created a new method for extending the feature point trajectories partially tracked through a video stream by estimating the missing parts. We also created an effective method for separating the tracked trajectories into a background part and an independently moving object part. We also proposed a technique for detecting moving object regions by estimating the motion of the background and subtracting it from the individual video frames.3.3-D reconstruction from imagesWe devised robust techniques for 3-D reconstruction from a video stream and from two separate images. We also derived a robust technique for 3-D reconstruction from a single image using knowledge about parallelism and orthogonality relations in the scene. Furthermore, we created a new technique for displaying the reconstructed 3-D shape in such a way that its shape characteristics are preserved.4.Optimal estimation and model selection for geometric inferencesA considerable progress is made in mathematical analysis of optimal parameter estimation and model selection, and the meaning of the model selection criteria, called the geometric AIC and the geometric MDL, and the theoretical accuracy bound, called the KCR lower bound, that the principal investigator proposed is made clear.
1.映像之间的对应检测,我们提出的新方法是在两个图像中自动提取特征点并自动检测它们之间的对应关系,并根据几何约束和全球一致性条件组合投票方案。我们通过设计一种使用模板匹配和使用暂定3-D重建的技术来生成较密集的功能对应的技术来补充它们。2。视频图像中移动对象的分离我们创建了一种新方法,创建了一种通过视频流进行部分跟踪的特征点轨迹的新方法,通过估计缺失的零件来进行部分跟踪。我们还创建了一种将轨迹轨迹分开为背景部分和独立移动对象部分的有效方法。我们还提出了一种通过估计背景运动并从单个视频框架中减去动作的技术来检测移动对象区域的技术。3.3-d从images We Desight We为从视频流和两个单独的图像中设计的3-D重建的强大技术。我们还使用有关场景中的并行性和正交关系的知识从单个图像中得出了一种可靠的3D重建技术。 Furthermore, we created a new technique for displaying the reconstructed 3-D shape in such a way that its shape characteristics are preserved.4.Optimal estimation and model selection for geometric inferencesA considerable progress is made in mathematical analysis of optimal parameter estimation and model selection, and the meaning of the model selection criteria, called the geometric AIC and the geometric MDL, and the theoretical accuracy bound, called the KCR lower bound, that the提议的首席研究员已清楚。
项目成果
期刊论文数量(81)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-stage Optimization for Multi-body Motion Segmentation
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:K. Kanatani;Y. Sugaya
- 通讯作者:K. Kanatani;Y. Sugaya
Image mosaicing by stratified matching (in Japanese).
通过分层匹配进行图像拼接(日语)。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:金澤靖;K.Kanatani et al.;K.Kanatani et al.;Y.Kanazawa et al.;K.Kanatani;K.Kanatani et al.;K.Kanatani;金谷 健一;Y.Kanazawa et al.
- 通讯作者:Y.Kanazawa et al.
Outlier removal for motion tracking by subspace separation.
通过子空间分离来去除运动跟踪的异常值。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:金澤靖;K.Kanatani et al.;K.Kanatani et al.;Y.Kanazawa et al.;K.Kanatani;K.Kanatani et al.;K.Kanatani;金谷 健一;Y.Kanazawa et al.;Y.Sugaya et al.
- 通讯作者:Y.Sugaya et al.
Motion image understanding by model selection (in Japanese).
通过模型选择来理解运动图像(日语)。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:富永昌二;原口英大;K.Kanatani
- 通讯作者:K.Kanatani
Statistical Methods in Video Processing
视频处理中的统计方法
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:T.Miyano;T.Tsutsui;D.Comaniciu
- 通讯作者:D.Comaniciu
共 39 条
- 1
- 2
- 3
- 4
- 5
- 6
- 8
KANATANI Kenichi的其他基金
Establishing Hyper-Renormalization for Geometric Estimation from Images
建立图像几何估计的超重整化
- 批准号:2465008624650086
- 财政年份:2012
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Challenging Exploratory ResearchGrant-in-Aid for Challenging Exploratory Research
Optimal 3-D Reconstruction from Multiple Images by Means of Orthogonal Projection in High-dimensional Spaces
通过高维空间中的正交投影从多个图像中进行最优 3D 重建
- 批准号:2150017221500172
- 财政年份:2009
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Upgrading image display of 3-D shapes with high density and high accuracy
升级高密度、高精度的 3D 形状图像显示
- 批准号:1750011217500112
- 财政年份:2005
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
New Development of Statistical Optimization and Model Selection for Motion Image Analysis
运动图像分析统计优化和模型选择的新进展
- 批准号:1368043213680432
- 财政年份:2001
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Stable Realization of Virtual Reality by Model Selection
通过模型选择稳定实现虚拟现实
- 批准号:1168037711680377
- 财政年份:1999
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Image Recognition and Understanding based on the Geometric Information Criterion
基于几何信息准则的图像识别与理解
- 批准号:0968035209680352
- 财政年份:1997
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Implementation of Optical Flow Analysis System Equipped with Reliability Evaluation
具有可靠性评估功能的光流分析系统的实现
- 批准号:0745806707458067
- 财政年份:1995
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (B)Grant-in-Aid for Scientific Research (B)
相似国自然基金
文本—行人图像跨模态匹配的鲁棒性特征学习及语义对齐研究
- 批准号:62362045
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
正交声呐图像特征匹配机理与融合方法研究
- 批准号:42306212
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向稀疏局域特征点的轻量化图像匹配算法研究
- 批准号:62301497
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低剂量不匹配投影数据的双能谱CT图像快速重建方法与理论分析
- 批准号:12371429
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
基于重构异源图像匹配的车辆自主定位修正方法研究
- 批准号:62203163
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Appearence-Invariant Image Transformation for Matching Thermal and Visivle Spectrum Using Deep Learning
使用深度学习匹配热光谱和可见光谱的外观不变图像变换
- 批准号:568514-2021568514-2021
- 财政年份:2021
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Canadian Graduate Scholarships Foreign Study SupplementsCanadian Graduate Scholarships Foreign Study Supplements
Dynamic analysis of joint motions with high accuracy using an image-matching method
使用图像匹配方法高精度关节运动动态分析
- 批准号:18K1212018K12120
- 财政年份:2018
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
CRII: RI: Matching Image Features with Correctness Predictions
CRII:RI:将图像特征与正确性预测相匹配
- 批准号:16571791657179
- 财政年份:2017
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Standard GrantStandard Grant
Visualization of voice-matching image with a sound camera and investigation of learning support system applying the visualization
使用声相机实现语音匹配图像的可视化以及应用该可视化的学习支持系统的研究
- 批准号:17K0107717K01077
- 财政年份:2017
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Object detection using distortion-tolerant, controllable, parametric image matching
使用畸变、可控、参数图像匹配进行物体检测
- 批准号:17K0025017K00250
- 财政年份:2017
- 资助金额:$ 2.43万$ 2.43万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)