Global Bifurcational Approach to Complex Spatio^temporal Patterns in Dissipative Systems
耗散系统中复杂时空模式的全局分叉方法
基本信息
- 批准号:13440027
- 负责人:
- 金额:$ 9.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In a regime of far-from equilibrium there appears a diversity of complex patterns such as self-replication, spatio-temporal patterns, and collisions among particle-like patterns. One of the powerful tools to understand these things is dynamical system theory, however its naive application in general does not work partly due to the high dimensionality of phase space and large deformation of solutions. What should be the clue for us to start with in understanding such behaviors? We need to alter our way of thinking, namely "Let us think about the geometric structures that guide solution orbits creating such a chaotic dynamism, rather than keeping track of the deformations of solutions in detail". In other words, we should try to characterize geometric structures of the infinite dimensional phase space in which behaviors of solution orbits become easily detectable. Taking this viewpoint, we accomplished the following two main things. Please refer to the published papers for other aspect o … More f achievements.1.Unfolding of generalized heteroclinic cycle implies spatio-temporal chaos.Chimerical methods, such as AUTO, give us a great amount of information on an unstable solution, as well as on the behavior of its unstable manifold. Heteroclinic cycle connecting several stationary patterns was identified as a key to understand the complex behaviors like spatio-temporal chaos for the Gray-Scott model. The mechanism itself has much wider applicability to other model systems.2.Role of "Scattors" for collision process among particle-like patterns.Scattering of particle-like patterns in dissipative systems has much attention from various fields. We focused on the issue how the input-output relation is controlled at a head-on collision where traveling pulses or spots interact strongly.It had remained an open problem due to the large deformation of patterns at a colliding point. We found that special type of unstable steady or time-periodic solutions called scattors and their stable and unstable manifolds direct the traffic flow of orbits.Such scattors are in general highly unstable even in ID case which causes a variety of input-output relations through the scattering process. We illustrate the ubiquity of scattors by using the complex Ginzburg-Landau equation, the Gray-Scott model and a three-component reaction diffusion model arising in gas-discharge phenomena. Less
在远面平衡的制度中,出现多种复杂模式,例如自我复制,时空模式以及类似粒子样模式之间的碰撞。理解这些内容的强大工具之一是动态系统理论,但是通常,其天真的应用并不能部分归功于相位空间的高维度和解决方案的较大变形。我们应该从理解这种行为开始的线索是什么?我们需要改变思维方式,即“让我们思考引导解决方案轨道创造这种混乱动态的几何结构,而不是详细跟踪解决方案的变形”。换句话说,我们应该尝试表征无限尺寸相空间的几何结构,其中溶液轨道的行为很容易被检测到。从这个角度来看,我们完成了以下两件事。请参阅已发表的论文,以了解其他方面。1。杂物杂斜周期的未包装意味着时空的混乱。Chimeric方法(例如自动),为我们提供了有关不稳定解决方案的大量信息,以及其不稳定歧管的行为。连接多个固定模式的杂斜周期被确定为了解灰色 - 斯科特模型的时空混乱等复杂行为的关键。该机制本身对其他模型系统具有更大的适用性。2。“ Scattor”在类似粒子的模式之间碰撞过程。耗散系统中类似粒子样模式的散射过程引起了各个领域的关注。我们专注于在正面碰撞中如何控制输入输出关系的问题,在该碰撞中,旅行脉冲或斑点相互作用很强。由于在碰撞点上模式的较大变形,因此仍然存在一个空旷的问题。我们发现,特殊类型的不稳定的稳定或时间周期性解决方案称为Scattors及其稳定且不稳定的歧管指导轨道的交通流量。通常,即使在ID情况下,这种扫描仪也通常是高度不稳定的,即使在ID情况下也会通过散射过程引起各种输入输出关系。我们通过使用复杂的Ginzburg-landau方程,灰色 - 斯科特模型和在气体 - 分离现象中产生的三组分反应扩散模型来说明史瓦的无处不在。较少的
项目成果
期刊论文数量(67)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yasumasa Nishiura, Takashi Teramoto, Kei-Ichi Ueda: "Dynamic transitions through scattors in dissipative systems"CHAOS. Vol.13,No.3. 962-972 (2003)
Yasumasa Nishiura、Takashi Teramoto、Kei-Ichi Ueda:“耗散系统中通过散射的动态转换”混沌。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nishiura, T.Teramoto, K.-I.Ueda: "Scattering and separators in dissipative systems"to appear.
Y.Nishiura、T.Teramoto、K.-I.Ueda:“耗散系统中的散射和分离器”出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I. Tsuda: "Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems"Behavioral and Brain Sciences. 24(5). 575-628 (2001)
I. Tsuda:“根据混沌动力系统解释动态神经活动”行为与脑科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Uesaka, R.Kobayashi: "Pattern Formation in the Crystallization of Ascorbic Acid"J.Cryst.Growth. Vol.237-239, Part 1. 237-239 (2002)
H.Uesaka、R.Kobayashi:“抗坏血酸结晶中的模式形成”J.Cryst.Growth。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
P.Erdi, I.Tsuda: "Hermeneutic approach to the brain : Process versus device"Theoria et Historia Scientiarum. VI(2). 307-321 (2002)
P.Erdi、I.Tsuda:“大脑的解释学方法:过程与设备”Theoria et Historia Scientiarum。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NISHIURA Yasumasa其他文献
NISHIURA Yasumasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NISHIURA Yasumasa', 18)}}的其他基金
Wave-particle duality in dissipative systems
耗散系统中的波粒二象性
- 批准号:
24654018 - 财政年份:2012
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on the strong interaction among spatially localized patterns in dissipative systems
耗散系统中空间局部模式之间的强相互作用研究
- 批准号:
21340019 - 财政年份:2009
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploration for Complex Dynamics of Particle Patterns in Dissipative Systems
耗散系统中粒子模式复杂动力学的探索
- 批准号:
16204008 - 财政年份:2004
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
The experimental study for creating an artificial nerve conduit with Schwann cells
雪旺细胞人工神经导管的实验研究
- 批准号:
13671488 - 财政年份:2001
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding of Spatio-temporal patterns by Singular Limit Methods
通过奇异极限方法理解时空模式
- 批准号:
11214201 - 财政年份:1999
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
相似国自然基金
退化拟周期驱动系统平衡点的稳定性和拟周期分叉
- 批准号:12371172
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
复动力系统中的Julia集面积与抛物分叉研究
- 批准号:12301102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分叉氢键作用的桥连多环类耐热炸药的组装及其性能研究
- 批准号:22305122
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
后过渡态分叉理论研究新策略的开发与应用
- 批准号:22303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
边界层转捩诱导动态失稳的分叉理论分析与数值模拟研究
- 批准号:12272400
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
相似海外基金
三叉神経節の細胞ネットワーク可塑的変化を基盤とする口腔癌性疼痛の新規分子機序
基于三叉神经节细胞网络可塑性变化的口腔癌疼痛的新分子机制
- 批准号:
23K27798 - 财政年份:2024
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanism of grazing bifurcation and mass unification in two-mass collisional vibration systems
二质量碰撞振动系统中的掠分岔与质量统一机制
- 批准号:
23K13353 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic bifurcation of patterns through spatio-temporal heterogeneity
通过时空异质性动态分叉模式
- 批准号:
2307650 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Standard Grant
Multiphysics of bifurcation phenomenon in nanostructures: Mechanical design of controlling brittle-ductile transition
纳米结构分岔现象的多物理场:控制脆塑转变的机械设计
- 批准号:
23H01295 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Patient-Specific Simulations to Guide Coronary Bifurcation Stenting
指导冠状动脉分叉支架置入的患者特异性模拟
- 批准号:
10810399 - 财政年份:2023
- 资助金额:
$ 9.6万 - 项目类别: