Homotopy Theory and its Aplications
同伦理论及其应用
基本信息
- 批准号:13440020
- 负责人:
- 金额:$ 7.36万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
When G is a topological group and X, Y be G-spaces, I defined an Euler class e(X,Y)∈[X_+,S^0*Y]^G_* as the very universal obstraction class for [X,Y]^G, the set of G-maps from X to Y, to be non-empty. I obstained some sufficient results when e(X,Y) becomes a faithful obstruction class. Concerning this problem, I also developed a more computable, but generally non faithful, obstruction class with Yasuhiro Hara.This sort of idea has been applied to consider Farber's topological complexity which concerns motion plannings such as robot arms, and, through the model categorical point of view, A^1-homotopy theory of Voevodsky and Morel. Also, some advance has been obtained in generalizing the Thorn polynomials in the singularity theory through HELP (=Homotopy Extension Lifting Property).Mikio Furuta pointed out that the stable homotopy Seiverg-Witten invariants for 4-manifolds with boundary are described by pro-spectra defined by Fredholm Universe, which is not a traditional universe in algebraic topology invented by May and his collaborators. Actually, this Fredholm universe is sort of "twisted" and appears to be very interesting.Also, during this period, we organized many meetings and lots of research interactions with mathematicians in other areas have been achieved :(a) International Conference on Algebraic Topology (July 27 -August 1, 2003)(b) International Workshop on Algebraic Topology at Nagoya Institute of Technology (August 3 -August 8, 2003)(c) Homotopy Nagoya Institute of Technology Homotopy Theory Meeting 01, 02(4 times!), 03, 04.
当g是拓扑组和x时,y是g空间时,我定义了euler e(x,y)∈[x _+,s^0* y]^g_*是[x,y]^g的非常普遍的反对类,是从x到y的g映射集的集合。当e(x,y)成为忠实的反对类时,我获得了一些足够的结果。关于这个问题,我还开发了一种更可计算的,但通常不忠实的反对类别的Yasuhiro Hara。这种想法已应用于考虑Farber的拓扑复杂性,涉及机器人武器等运动策略,以及通过模型的观点,即Voevodsky和Morel的模型观点。 Also, some advance has been obtained in generalizing the Thorn polynomials in the singularity theory through HELP (=Homotopy Extension Lifting Property).Mikio Furuta pointed out that the stable homotopy Seiverg-Witten invariants for 4-manifolds with boundary are described by pro-spectra defined by Fredholm Universe, which is not a traditional universe in algebraic topology introduced by May and his collaborators. Actually, this Fredholm universe is sort of "twisted" and appears to be very interesting.Also, during this period, we organized many meetings and lots of research interactions with mathematicians in other areas have been achieved :(a) International Conference on Algebraic Topology (July 27 -August 1, 2003)(b) International Workshop on Algebraic Topology at Nagoya Institute of Technology (August 3 -August 8, 2003)(c)同型纳戈亚技术研究所同义理论会议01,02(4次!),03,04。
项目成果
期刊论文数量(74)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
古田 幹雄: "指数定理2(岩波講座 現代数学の展開)"岩波書店. 327 (2002)
古田干雄:“索引定理 2(岩波讲座:现代数学的发展)”岩波书店 327(2002 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuhiro Hara, N.Minami: "Borsuk-Ulam type theorems for compact Lie group actions"Proc.Amer.Math.Soc.. 132. 903-909 (2004)
Yasuhiro Hara,N.Minami:“紧李群作用的 Borsuk-Ulam 型定理”Proc.Amer.Math.Soc.. 132. 903-909 (2004)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Minami: "Some mathematical influences of Stewart Priddy"Contemp. Math.. 293(印刷中). (2002)
N. Minami:“斯图尔特·普里迪的一些数学影响”Contemp.. 293(印刷中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Minami: "Fron K(n+1)_*X to K(n)_*X"Proc. Amr. Math. Soc.. 130. 1557-1562 (2002)
N. Minami:“从 K(n 1)_*X 到 K(n)_*X”过程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Furuta: "Finite dimensional approximations in geometry"Proceedings of the International Congress of Mathematicians, Vol.II (Beijing, 2002), Higher (Ed.Press, Beijing). 395-403 (2002)
M.Furuta:“几何中的有限维近似”,国际数学家大会论文集,第二卷(北京,2002),高等(编辑出版社,北京)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINAMI Norihiko其他文献
MINAMI Norihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINAMI Norihiko', 18)}}的其他基金
Applications to the higher category theory and the field with one element to the stable homotopy theory
在高范畴论和稳定同伦理论的一元领域中的应用
- 批准号:
23540084 - 财政年份:2011
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Developments ofAlgebtaic Topology
代数拓扑学的新进展
- 批准号:
16340015 - 财政年份:2004
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global Study of the Stable Homotopy Category and the Kervaire Invariant Problem
稳定同伦范畴和Kervaire不变问题的全局研究
- 批准号:
11640072 - 财政年份:1999
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
基于证明辅助工具Coq和多项式代数方法的智能信号处理
- 批准号:61571064
- 批准年份:2015
- 资助金额:68.0 万元
- 项目类别:面上项目
相似海外基金
芸術領域のおける模写制作の実践的研究-韓国通度寺霊山殿彩色・壁画を対象として-
艺术领域临摹制作的实践研究——以韩国通度寺神山大殿绘画、壁画为重点——
- 批准号:
20652014 - 财政年份:2008
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study on the Traditional and Historical coating pigments and development on new coating materials on wooden Architectures in Japan.
日本木结构建筑传统历史涂料颜料的研究及新型涂料材料的开发
- 批准号:
19500872 - 财政年份:2007
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Goethe-Reception in postwar Japan
歌德——战后日本的接待
- 批准号:
13610623 - 财政年份:2001
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global Study of the Stable Homotopy Category and the Kervaire Invariant Problem
稳定同伦范畴和Kervaire不变问题的全局研究
- 批准号:
11640072 - 财政年份:1999
- 资助金额:
$ 7.36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)