Studies on Convex Optimization and Related Problems
凸优化及相关问题的研究
基本信息
- 批准号:14350046
- 负责人:
- 金额:$ 6.14万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Convex optimization is a basic research area which has been studied for a long time. It is also a very hot research area in which various applications of practical importance have recently been discovered as novel efficient solution methods such as interior point algorithms have been developed. The aim of this research is to develop practically efficient methods based on solid theoretical ground for solving convex optimization problems and related problems involving in particular constrained convex programming problems, positive semi-definite programming problems, and monotone complementarity problems, thereby contributing to expand the area of applications in engineering. The methods developed in this project are listed as follows : (1)Sequential quadratically constrained quadratic programming method for constrained convex programming problems ; (2)Regularized Newton method for minimizing convex functions with possibly singular Hessians ; (3)Active set identification technique in the proximal point method for monotone complementarity problems ; (4)Iterative methods for mathematical programs with equilibrium constraints ; (5)Smoothing Newton method for second-order cone complementarity problems ; (6)Matrix splitting method for second-order cone complementarity problems. Moreover, we introduced a new equilibrium concept in a non-cooperative game and studied it through a second-order cone complementarity problem. We have also studied nonlinear semidefinite programming problems and mathematical programs with equilibrium constraints under uncertainty. These studies will lead to our next research subject of robust optimization.
凸优化是一个已经研究了很长时间的基础研究领域。这也是一个非常热门的研究领域,随着诸如内点算法之类的新颖有效的解决方法的开发,最近发现了各种具有实际重要性的应用。本研究的目的是基于坚实的理论基础开发实用有效的方法来解决凸优化问题和相关问题,特别是约束凸规划问题、正半定规划问题和单调互补问题,从而有助于扩大领域工程中的应用。本课题开发的方法如下: (1)约束凸规划问题的序贯二次约束二次规划方法; (2)正则牛顿法最小化可能具有奇异Hessians的凸函数; (3)单调互补问题的近点法中的活动集识别技术; (4)具有平衡约束的数学规划的迭代方法; (5)二阶锥互补问题的平滑牛顿法; (6)二阶锥互补问题的矩阵分裂法。此外,我们在非合作博弈中引入了新的均衡概念,并通过二阶锥体互补问题对其进行了研究。我们还研究了非线性半定规划问题和不确定性下具有平衡约束的数学规划。这些研究将引出我们下一个研究课题——鲁棒优化。
项目成果
期刊论文数量(84)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G.H.Lin, M.Fukushima: "Some exact penalty results for nonlinear programs and their applications to mathematical programs with equilibrium"Journal of Optimization Theory and Applications. Vol.118,No.1. 67-80 (2003)
G.H.Lin、M.Fukushima:“非线性程序的一些精确惩罚结果及其在具有平衡的数学程序中的应用”优化理论与应用杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Robust Nash equilibria and second-order cone complementarity problems
鲁棒纳什均衡和二阶锥体互补问题
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S. Hayashi;N. Yamashita and M. Fukushima
- 通讯作者:N. Yamashita and M. Fukushima
N.Yamashita, H.Dan, M.Fukushima: "On the identification of degenerate indices in the nonlinear complementarity problem with the proximal point algorithm"Mathematical Programming. (掲載予定).
N.Yamashita、H.Dan、M.Fukushima:“用近点算法识别非线性互补问题中的简并指数”数学规划(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Fukushima, Z.-Q.Luo, P.Tseng: "A sequential quadratically constrained quadratic programming method for differentiable convex minimization"SIAM Journal on Optimization. (掲載予定).
M.Fukushima、Z.-Q.Luo、P.Tseng:“用于可微凸最小化的顺序二次约束二次规划方法”SIAM 优化杂志(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A combined smoothing and regularization method for monotone second-order cone complementarity problems
- DOI:10.1137/s1052623403421516
- 发表时间:2005-01-01
- 期刊:
- 影响因子:3.1
- 作者:Hayashi, S;Yamashita, N;Fukushima, M
- 通讯作者:Fukushima, M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUKUSHIMA Masao其他文献
FUKUSHIMA Masao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUKUSHIMA Masao', 18)}}的其他基金
Methods for Complementarity and Related Problems
互补性方法及相关问题
- 批准号:
22500256 - 财政年份:2010
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Methods for Robust Optimization and Related Problems
鲁棒优化方法及相关问题
- 批准号:
17360042 - 财政年份:2005
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Synthesis, Analysis and Algorithms of Optimization and Equilibrium Systems
优化和平衡系统的综合、分析和算法
- 批准号:
11694151 - 财政年份:1999
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on Development and Synthesis of Efficient Algorithms for Optimization and Equilibrium Problems
优化和平衡问题的高效算法的开发和综合研究
- 批准号:
08650079 - 财政年份:1996
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Optimization Algorithms for Large-Scale Systems Based on Convex Analysis
基于凸分析的大型系统优化算法研究
- 批准号:
06650443 - 财政年份:1994
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Studies on parallel algorithms for mathematical programming
数学规划并行算法研究
- 批准号:
02680025 - 财政年份:1990
- 资助金额:
$ 6.14万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Developing mathematical model driven optimized recurrent glioblastoma therapies
开发数学模型驱动优化的复发性胶质母细胞瘤疗法
- 批准号:
10437915 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
Developing mathematical model driven optimized recurrent glioblastoma therapies
开发数学模型驱动优化的复发性胶质母细胞瘤疗法
- 批准号:
10288768 - 财政年份:2021
- 资助金额:
$ 6.14万 - 项目类别:
A Quantitative Systems Pharmacology Software Platform for Biologics: reduce costs and accelerate development of innovative biotherapeutics
生物制剂定量系统药理学软件平台:降低成本并加速创新生物治疗药物的开发
- 批准号:
9266447 - 财政年份:2016
- 资助金额:
$ 6.14万 - 项目类别:
Interactive Informatics Resource for Research-driven Cancer Proteomics
研究驱动型癌症蛋白质组学的交互式信息学资源
- 批准号:
8685758 - 财政年份:2014
- 资助金额:
$ 6.14万 - 项目类别:
Interactive Informatics Resource for Research-driven Cancer Proteomics
研究驱动型癌症蛋白质组学的交互式信息学资源
- 批准号:
8847691 - 财政年份:2014
- 资助金额:
$ 6.14万 - 项目类别: