Investigation of the Landslip by the Bifurcation Theory and the Finite Element Method using Incompatible Elements

用分岔理论和不相容元有限元法研究山体滑坡

基本信息

  • 批准号:
    11450181
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

1) Bifurcation Analysis in a Circular Cylinder of Coaxial and Non-coaxial Cam-clay Models. We obtain the exact solutions for all diffuse modes under symmetric and anti-symmetric deformation for coaxial and non-coaxial Cam-clay model., We find that, for a non-coaxial model, the bifurcation loads for all modes exist and nearly equal for a compressive test; however, the load for an extended test takes its minimum in a - constriction mode. These results agree well with the experimental deformation pattern of saturated clays. We then find that for a non-coaxial model, judging from the distributions of the maximum strain, the predicted net-like slip planes agree well with the observed slip pattern in the compressive test of clays. We find also, for a coaxial model, the bifurcation load for an ax symmetric bulging mode, which is often observed in the experiments, does not exist. This shows that the non-coaxial terms are indispensable to investigate the landslip.2) Finite Element Method Analysis of Soil/Water Couping Problems using an Implicit Calculation Algorithm. We develop a new method of implicit, finite element analysis of soil / water coupling problems in a well-known Cam-clay model. The implicit return mapping scheme is based on the elastic predictor and the plastic corrector. Some examples of the implicit method show the high accuracy and much reducing the total CPU time.3) Finite Element Analysis with the Incompatible Elements and the Examination of the Accuracy. As a basic research on the landslip, we developed a strong discontinuity finite element analysis with the displacement discontinuity inside the elements, which solutions are mesh-independent. We then estimate the method by means of verifying the accuracy of the fracture energy by using the E-integral. As a result, we find that the strong discontinuity analysis is high accurate in view of the fracture energy.
1) 同轴和非同轴 Cam-clay 模型圆柱体的分岔分析。对于同轴和非同轴 Cam-clay 模型,我们获得了对称和反对称变形下所有扩散模态的精确解。我们发现,对于非同轴模型,所有模态的分叉载荷均存在且几乎相等压缩测试;然而,扩展测试的负载在收缩模式下达到最小值。这些结果与饱和粘土的实验变形模式非常吻合。然后我们发现,对于非同轴模型,从最大应变的分布来看,预测的网状滑移面与粘土压缩试验中观察到的滑移模式非常吻合。我们还发现,对于同轴模型,实验中经常观察到的轴对称凸出模式的分叉载荷并不存在。这说明非同轴项对于研究滑坡是不可缺少的。2)基于隐式计算算法的土/水耦合问题的有限元分析。我们开发了一种新方法,可以在著名的 Cam-clay 模型中对土/水耦合问题进行隐式有限元分析。隐式返回映射方案基于弹性预测器和塑性校正器。隐式方法的一些例子表明其精度高,并且大大减少了总的CPU时间。3)不相容单元有限元分析及精度检验。作为滑坡的基础研究,我们开发了一种强不连续性有限元分析,其单元内部具有位移不连续性,其解与网格无关。然后我们通过使用 E 积分验证断裂能的准确性来估计该方法。结果,我们发现考虑到断裂能,强不连续性分析具有很高的准确性。

项目成果

期刊论文数量(130)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
橋本堅一 他3名: "圧縮荷重下にある3次元材料内き裂からの破壊き裂進展に関する実験的検討"破壊力学シンポジウム論文集. Vol.10. 97-101 (1999)
Kenichi Hashimoto 等 3 人:“压缩载荷下材料三维内部裂纹的断裂扩展实验研究”断裂力学研讨会论文集第 10 卷,97-101 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
C.Yatomi: "Conditions for the Localization of Deformation infinite Elastic-Plastic Deformations"Proc. of 4th Int. Conf. on Localization and Bifurcation Theory. 209-218 (1998)
C.Yatomi:“变形无限弹塑性变形的局部化条件”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Suzuki: "Finite element analysis of the E-integral for a frictional crack under the several loading histories"Journal of Applied Mechanics. Vo1. 1. 45-53 (1998)
Y.Suzuki:“多个加载历史下摩擦裂纹的 E 积分的有限元分析”应用力学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
矢富盟祥 他1名: "圧縮荷重下にある進展き裂のE積分によるエネルギ解放率の有限要素解析"土木学会論文集. No.612 I-46. 251-263 (1999)
Meiyoshi Yatomi 等人:“通过压缩载荷下传播裂纹的 E 积分对能量释放率进行有限元分析”,日本土木工程师学会会刊,第 612 I-46 号(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Sugimoto: "On the Examination of the Strong Discontinuity Analysis for a Kinking Discontinuous Surface"Journal of the Society of Material Science. in print. (2002)
T.Sugimoto:“关于扭结不连续表面的强不连续性分析的检验”材料科学学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YATOMI Chikayoshi其他文献

YATOMI Chikayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YATOMI Chikayoshi', 18)}}的其他基金

Fracture mechanical explanation of ground disaster using a discontinuous finite element method
使用不连续有限元方法解释地面灾害的断裂力学
  • 批准号:
    19310120
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Explanation of fracture phenomena by crack extension analysis using extended finite element method
使用扩展有限元法通过裂纹扩展分析解释断裂现象
  • 批准号:
    16360226
  • 财政年份:
    2004
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似国自然基金

NiTi合金多层层裂与绝热剪切带裂纹相互作用机制及动态断裂行为研究
  • 批准号:
    12372367
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
天山康古尔-黄山剪切带金矿床垂向变化规律研究
  • 批准号:
    42302102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于复杂剪切带网络的非晶合金能量调控及韧塑化机制研究
  • 批准号:
    52361026
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
颗粒边界电导率及机制研究:对地幔剪切带高电导异常的启示
  • 批准号:
    42304109
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藏北可可西里盆地左旋剪切带现今变形机制与岩石圈流变结构
  • 批准号:
    42372267
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Predictive Multiscale Modelling Protocol of Adiabatic Shear Band Initiation in Manufacturing and Aerospace Materials
制造和航空航天材料中绝热剪切带引发的预测多尺度建模协议
  • 批准号:
    EP/W01579X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Research Grant
CAREER: Taking Process-based Models to the Field to Understand the Possibility and Implication of an Internal Shear Band Forming in Ice Flowing over Rough Topography
职业:将基于过程的模型带到现场,了解在粗糙地形上流动的冰中形成内部剪切带的可能性和影响
  • 批准号:
    2142651
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Computational homogenization of inelastic conventional and gradient-extended microstructures by a shear band approach
通过剪切带方法对非弹性常规和梯度延伸微结构进行计算均质化
  • 批准号:
    310713160
  • 财政年份:
    2016
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Research Grants
Microscopic mechanisms of shear band formation in bulk metallic glasses
大块金属玻璃剪切带形成的微观机制
  • 批准号:
    224558825
  • 财政年份:
    2012
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Priority Programmes
Collaborative Research: Use of Novel True Triaxial Tests and Shear Band Theory to Determine Failure Properties of Compactive Porous Sandstones
合作研究:利用新型真三轴试验和剪切带理论确定压实多孔砂岩的破坏特性
  • 批准号:
    0940981
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了