Multilateral research of stochastic analysis in infinite dimensional spaces
无限维空间随机分析的多边研究
基本信息
- 批准号:11440045
- 负责人:
- 金额:$ 3.52万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have accomplished the research of the semigroup domination and the intertwining property of semigroups. The semigroup domination stands for that |T^^→_tu|【less than or equal】T_t|u| holds for semigroup T^^→_t and T_t. Here u are supposed to be a vector valued function. Typical example is a differential form on a Riemannian manifold. The characterization in terms of the generator is known. We give here a sufficient condition in terms of square field operator. Crucial assumptions are the positivity and the locality. Intertwining property is the following property: for two generator L, L^^→, it holds that DL = L^^→D + R. We give necessary and sufficient conditions in terms of the semigroup and the resolvents. Our aim has been to reconstruct the.Bakry-Emery T_2 theory but we have succeeded in including diffusion processes with boundary condition and it gives a generalization of Bakry-Emery T_2 theory.For application, we can make use of them to show the Littlewood-Paley inequality and the L^p multiplier theorem. In fact, we have considered the Brownian motion on an Riemannian manifold with boundary and show the Littlewood-Paley inequality for it under the assumption of positivity of the second fundamental form of the boundary. Making use of this, we can show the L^p boundedness of the Riesz transformation. L^p multiplier theorem is to give an sufficient condition on φ and A so that φ(A) is a bounded operator on L_p. Stein showed this for a generator of a symmetric diffusion process with φ being of Laplace transform type. We have shown that the same result holds for the Hodge-Kodaira operator on a Riemannian manifold.
我们已经完成了半群统治和半群的交织特性的研究。 Semigroup支配代表| T ^^→_tu | |小于或等于】T_T| U |保留Semigroup t ^^→_t和T_T。在这里,U预计将是矢量有价值的函数。典型的例子是riemannian歧管上的差异形式。以发电机的形式进行的表征是已知的。我们在此处给予方形野外操作员的条件足够。关键的假设是积极性和所在地。交织属性是以下属性:对于两个发电机l,l ^^→,它认为dl = l ^^→d + R.我们根据半群和分辨率提供了必要的足够条件。我们的目的是重建bakry-Emery T_2理论,但我们成功地包括了具有边界条件的差异过程,它给出了Bakry-Emery T_2理论的概括。对于应用,我们可以使用它们来显示Littlewood-Paley的不平等和L^P Multipleer定理。实际上,我们考虑了带边界的Riemannian歧管上的布朗运动,并在边界的第二种基本形式的阳性假设下显示了Littlewood-Paley的不平等。利用这一点,我们可以显示Riesz转换的L^p界限。 l^p乘数定理是在φ上给出足够的条件,因此φ(a)是l_p上的有限算子。斯坦(Stein)为对称扩散过程的发电机展示了这一点,其φ是拉普拉斯变换类型的生成器。我们已经表明,在Riemannian歧管上,Hodge-Kodaira操作员的结果相同。
项目成果
期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Naomasa Ueki: "Asymototic expansion of stochastic osoillatory integrals with rotation in varianc"Ann. Inst. H. Poincare Probab. Statist.. 35. 417-457 (1999)
Naomasa Ueki:“具有变方差旋转的随机振荡积分的渐进展开”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naomasa Ueki: "Asymptotic expansion of stochastic oscillatory integrals with rotation invariance"Ann. Inst. H. Poincare Probab. Statist. 35. 417-457 (1999)
Naomasa Ueki:“具有旋转不变性的随机振荡积分的渐近展开”Ann。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nobuo Yoshida: "Application of log : Soberly inequality to the stochastic dynamics of unbounded spin systems on the lattice"Journal of Functional Analysis. 173. 74-102 (2000)
Nobuo Yoshida:“对数的应用:清醒的不等式对晶格上无界自旋系统的随机动力学”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ichiro Shigekawa: "The domain of a generator and the intertwining property"Stochastics in cimte and infinite dimensions. 401-410 (2001)
Ichiro Shigekawa:“生成器的域和交织的属性”cimte 和无限维度中的随机变量。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masanori Hino: "Exponential decay of positivity preserving semigroups on $L^∧p$, Osaka Journal of Mathematics, Vol.37(2000), 603-624."Osaka Journal of Mathematics. 37. 603-624 (2000)
Masanori Hino:“$L^∧p$ 上正性保留半群的指数衰减,大阪数学杂志,第 37 卷(2000),603-624。”大阪数学杂志 37. 603-624(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIGEKAWA Ichiro其他文献
SHIGEKAWA Ichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIGEKAWA Ichiro', 18)}}的其他基金
Infinite dimensional stochastic analysis and geometry
无限维随机分析和几何
- 批准号:
21340030 - 财政年份:2009
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic analysis in infinite dimensional spaces
无限维空间中的随机分析
- 批准号:
17340036 - 财政年份:2005
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrated research of Probability Theory
概率论综合研究
- 批准号:
14204008 - 财政年份:2002
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stochastic analysis on a loop group
循环群的随机分析
- 批准号:
08454041 - 财政年份:1996
- 资助金额:
$ 3.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)