Combinatorics in representation theory of classical groups and quantum groups, and applications
经典群和量子群表示论中的组合学及其应用
基本信息
- 批准号:10440004
- 负责人:
- 金额:$ 8.26万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we obtained the following results.1. Okada obtained explicit branching rules for the tensor products and restrictions of the irreducible representations of the classical groups corresponding to nearly-rectangular shaped Young diagrams. And he proved that the partition functions of the square ice model related to the alternating sign matrices with symmetry can be expressed in terms of the irreducible characters of the classical groups.2. Kashiwara described the crystal bases for the quantum group U_q (gl(m, n))(with G.Benkart and S.Kang). Also, in the study of D-modules on the flag varieties, he proved the Kazhdan-Lusztig conjecture for the affine Lie algebras at a non-critical level (with T.Tanisaki), and showed that the duality for D-modules on the flag variety corresponds to that of Harish-Chandra modules (with D.Bartlet).3. Koike described, in terms of generalized Brauer diagrams, the structure of the centralizer algebra of the spin groups on the tensor product of the basic spin representation and the tensor powers of the natural representation. Also he gave a realization of irreducible representations of the spin groups in the above tensor products.4. Terada gave an geometric interpretation to the Robinson-Schensted correpondence between Brauer diagrams and up-down tableaux. And he constructed an Robinson-Schensted-type bijection for the Weil representation of sp (2n)(with T.Roby).5. Yamada described weight vectors in the basic representations of some affine Lie algebras in terms of symmetric functions (with T.Nakajima), and found an interesting facts on the spin decomposition matrices of the symmetric groups. And He found the Littlewood's multiple formula for the spin irreducible characters of the symmetric groups (with H.Mizukawa).
在该研究项目中,我们获得了以下结果1。冈田获得了张量产品的明确分支规则,并对与几乎矩形的年轻图相对应的经典组的不可约定表示的限制。他证明了与与对称的交替符号矩阵有关的平方冰模型的分区函数可以用经典组的不可约特征来表示。2。 Kashiwara描述了量子组U_Q(GL(M,N))的晶体碱基(带G.Benkart和S.Kang)。此外,在对国旗品种的D模型的研究中,他证明了仿生的Kazhdan-Lusztig猜想是非关键水平(带有T.Tanisaki)的代数,并证明了旗帜上D模型的双重性与Harish-Chandra Modules(与D.Bartlet)相对应。 Koike在广义的Brauer图中描述了自旋组在基本自旋表示的张量和自然代表的张量量的张量产物上的中央式代数的结构。他还实现了上述张量产品中自旋组的不可还原表示。4。 Terada对Brauer图和上向下的Tableaux之间的Robinson-Schensted Correponcence进行了几何解释。他为SP(2n)(带有T.Roby)的Weil表示构建了Robinson-Schensted-type boovion。5。 Yamada用对称函数(使用T.Nakajima)描述了一些仿射代数的基本表示中的重量向量,并在对称组的自旋分解矩阵上找到了一个有趣的事实。他发现了利特伍德(Littlewood)的多重公式,用于对称群体的旋转不可减少字符(与H.Mizukawa)。
项目成果
期刊论文数量(96)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.-F.Yamada: "Schur functions and two realizations of the basic A^<(1)>_1-module"Proceedings of the International Workshop on Special Functions (ed.C.Dunkl et al.). 431-438 (2000)
H.-F.Yamada:“Schur 函数和基本 A^<(1)>_1-module 的两种实现”国际特殊函数研讨会论文集(ed.C.Dunkl 等人)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kashiwara and P.Schapira: "Ind-Sheaves, distributions, and microlocalization"Asterisque. (2001)
M.Kashiwara 和 P.Schapira:“Ind-Sheaves、分布和微定位”星号。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.Barlet and M.Kashiwara: "Duality of D-modules on flag manifolds"Internat.Math.Res.Notices. 23. 1243-1257 (2000)
D.Barlet 和 M.Kashiwara:“标志流形上 D 模的对偶性”Internat.Math.Res.Notices。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kashiwara: "Semisimple holonomic D-modules"Topological field theory, primitive forms and related topics, (ed. Kashiwara et al., Progress in Math.). 160. 267-271 (1998)
M.Kashiwara:“半简单完整 D 模”拓扑场论、原始形式和相关主题(编者:Kashiwara 等人,数学进展)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kashiwara and T.Tanisaki: "Kazhdan-Lusztig conjecture for symmetrizable Kac-Moody Lie algebras.III-Positive rational case"Asian J.Math.. 2. 779-832 (1998)
M.Kashiwara 和 T.Tanisaki:“对称化 Kac-Moody 李代数的 Kazhdan-Lusztig 猜想。III-正理例”亚洲 J.Math.. 2. 779-832 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
共 28 条
- 1
- 2
- 3
- 4
- 5
- 6
OKADA Soichi的其他基金
Lie theory for alternating sign matrices
交替符号矩阵的李理论
- 批准号:2265400422654004
- 财政年份:2010
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Grant-in-Aid for Challenging Exploratory ResearchGrant-in-Aid for Challenging Exploratory Research
Combinatorics of alternating sign matrices and symmetric functions and applications to representation theory and integrable systems
交替符号矩阵和对称函数的组合及其在表示论和可积系统中的应用
- 批准号:1854002418540024
- 财政年份:2006
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
相似海外基金
Classical and quantum homomorphisms from discrete groups to Lie groups
从离散群到李群的经典和量子同态
- 批准号:14065591406559
- 财政年份:2014
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Continuing GrantContinuing Grant
Representation of classical and quantum groups
经典群和量子群的表示
- 批准号:261452-2008261452-2008
- 财政年份:2013
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras
经典群、量子群和赫克代数的表示论和组合学
- 批准号:2354000823540008
- 财政年份:2011
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)
Representation of classical and quantum groups
经典群和量子群的表示
- 批准号:261452-2008261452-2008
- 财政年份:2011
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual
Representation of classical and quantum groups
经典群和量子群的表示
- 批准号:261452-2008261452-2008
- 财政年份:2010
- 资助金额:$ 8.26万$ 8.26万
- 项目类别:Discovery Grants Program - IndividualDiscovery Grants Program - Individual