Increasing the energy efficiency of plasma spraying by means of simulation-based process development

通过基于模拟的工艺开发提高等离子喷涂的能源效率

基本信息

项目摘要

Plasma spraying is one of the most important process variants in thermal spraying. At present, only a small part of the available energy is used to accelerate and melt the particles. A promising solution for increasing energy efficiency is a solid shroud that surrounds the plasma free jet and thus prevents mixing with the ambient air. As a result of this separation, the plasma temperature can be increased, thereby raising the energy efficiency. Another expected positive effect is the prevention of oxidation of the spray particles and thus the coatings.The primary goal of the project is to investigate the potential to increasing the energy efficiency of the plasma spraying process by using a solid shroud. In this project a methodology will be developed to design such a shroud and to optimize its geometry for given process parameters. Ideally, this solid shroud also increases the plasma stability of the plasma jet and thus the process stability. Therefore, a further goal is to investigate the effects of a solid shroud on the plasma stability. In addition to energy efficiency, a solid shroud also offers great potential for improving coating properties. Consequently, the possible influence on the coating properties will be investigated. In order to achieve these goals, a numerical simulation model of a plasma generator with a solid shroud will be developed based on a model of previous DFG projects. By using modern algorithms, such as particle swarm optimization and evolutionary algorithms, the geometry of the solid shroud is then calculated and optimized. The effects of the nozzle extension on plasma stability will be investigated by high-speed videography of the plasma free jet and high-resolution current and potential measurements. For these, appropriate measuring equipment is requested as part of this proposal. In experimental tests the effect on the energy efficiency and on the coating properties will be determined for the spray materials Al2O3 and MCrAlY.In the third year of the research project, a further approach to increasing energy efficiency, preheating of the spray particles, will be investigated. By exploiting the radiation of the plasma jet, the particles can be preheated without the need for an external source of energy. With the help of numerical simulations and experiments, such a preheating device will be designed and its potential to increase the energy efficiency will be determined. A combination of a solid shroud and a particle preheating will also be examined in detail this third year.
血浆喷涂是热喷涂中最重要的过程变体之一。目前,只有一小部分可用能量用于加速和融化颗粒。提高能源效率的有前途的解决方案是围绕缺乏血浆的射流的固体裹尸布,从而防止与环境空气混合。由于这种分离,可以提高等离子温度,从而提高能源效率。另一个预期的积极作用是预防喷雾颗粒和涂料的氧化。该项目的主要目标是研究使用固体裹尸布提高等离子体喷涂工艺的能效的潜力。在此项目中,将开发一种方法来设计这样的裹尸布并为给定的过程参数优化其几何形状。理想情况下,这种固体裹尸布还增加了等离子体喷射的血浆稳定性,从而增加了过程稳定性。因此,另一个目标是研究固体裹尸布对等离子体稳定性的影响。除了能源效率外,固体裹尸布还提供了改善涂料特性的巨大潜力。因此,将研究对涂层特性的可能影响。为了实现这些目标,将根据先前的DFG项目的模型来开发具有固体罩的等离子体生成器的数值模拟模型。通过使用现代算法,例如粒子群优化和进化算法,然后计算和优化实心裹尸布的几何形状。喷嘴扩展对等离子体稳定性的影响将通过缺乏血浆射流以及高分辨率电流和潜在测量值的高速摄影进行研究。对于这些,作为本提案的一部分,请求适当的测量设备。在实验测试中,将对研究项目的第三年进行喷雾材料AL2O3和MCRALY的能源效率和对涂层的影响,这是一种进一步提高能源效率的进一步方法,可以研究喷雾颗粒的预热。通过利用等离子射流的辐射,可以预热颗粒而无需外部能源。借助数值模拟和实验,将设计这种预热装置,并确定其提高能源效率的潜力。在本三年还将详细研究实心裹尸布和颗粒预热的组合。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr.-Ing. Kirsten Bobzin其他文献

Professorin Dr.-Ing. Kirsten Bobzin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr.-Ing. Kirsten Bobzin', 18)}}的其他基金

Simulation Supported Process Development for the Deposition of MCrAlY Coatings by Means of the AC-HVAF Process
仿真支持通过 AC-HVAF 工艺沉积 MCrAlY 涂层的工艺开发
  • 批准号:
    437084607
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fundamental research on deposition of amorphous coatings on surfaces of inner geometries and evaluation of phase stability under tribological loading
内部几何形状表面非晶涂层沉积的基础研究和摩擦载荷下相稳定性的评估
  • 批准号:
    419126987
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of novel creep resistant bond coats for “Environmental Barrier Coatings”
开发用于“环境屏障涂层”的新型抗蠕变粘合涂层
  • 批准号:
    428973451
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of novel metallic feedstock materials for heating elements produced by thermal spraying
热喷涂加热元件用新型金属原料的开发
  • 批准号:
    437095503
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigations on temperature-activated coatings for friction reduction during turning of titanium alloys
钛合金车削过程中减少摩擦的温度激活涂层的研究
  • 批准号:
    422345568
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental and simulative investigations on the fatigue behavior of compounds, consisted of Cr-based nitride hard coatings on steel substrate under cyclic impact loads and bending stresses“ (Fatigue)
对由钢基体上的铬基氮化物硬质涂层组成的化合物在循环冲击载荷和弯曲应力下的疲劳行为进行实验和模拟研究(疲劳)
  • 批准号:
    422784687
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Thermo-Elastohydrodynamics of Coated Polymer Gears
涂层聚合物齿轮的热弹流体动力学
  • 批准号:
    391059617
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Influencing the arc behavior in cascaded single-arc DC plasma generator (DC-EKEAPG) to improve process stability and coating properties
影响级联单弧直流等离子发生器 (DC-EKEAPG) 中的电弧行为,以提高工艺稳定性和涂层性能
  • 批准号:
    336061514
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development of a method for in-situ determination of deposition efficiency in thermal spraying
热喷涂沉积效率原位测定方法的开发
  • 批准号:
    352196289
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Efficient Production of Novel Fe-based Coatings for Large-area Applications by Means of AC-HVAF Spraying
通过 AC-HVAF 喷涂高效生产大面积应用的新型铁基涂层
  • 批准号:
    284041570
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

全基因组关联分析揭示ZmMGT1调控玉米种子活力的功能机理
  • 批准号:
    32372161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
miPEP398-miR398诱导亚低温条件下番茄种子活力的机制研究
  • 批准号:
    32372677
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物钟核受体Rev-erbα在缺血性卒中神经元能量代谢中的改善作用及机制研究
  • 批准号:
    82371332
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
协同多精度活力测度的高密度城区公园供需评价与调控研究
  • 批准号:
    52308066
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Increasing the Energy Efficiency and Reliability of Next-generation Electric Traction Drive Systems
提高下一代电力牵引驱动系统的能源效率和可靠性
  • 批准号:
    555564-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Increasing the Energy Efficiency and Reliability of Next-generation Electric Traction Drive Systems
提高下一代电力牵引驱动系统的能源效率和可靠性
  • 批准号:
    555564-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Increasing the Energy Efficiency and Reliability of Next-generation Electric Traction Drive Systems
提高下一代电力牵引驱动系统的能源效率和可靠性
  • 批准号:
    555564-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Increasing Energy Efficiency and Decarbonising Swimming Pools Using Non-Chemical, Advanced Physical Water Treatment Technology
使用非化学、先进的物理水处理技术提高游泳池的能源效率和脱碳
  • 批准号:
    77463
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Newton Fund - LASTEC-Laser surface texturing of compressor’s mechanical components: Increasing energy efficiency by improved tribological performance
牛顿基金 - LASTEC-压缩机机械部件的激光表面纹理:通过改进摩擦学性能提高能源效率
  • 批准号:
    102713
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了