Multi-scale modeling of the thermal workpiece load in the turning process considering the cutting fluid

考虑切削液的车削过程中工件热载荷的多尺度建模

基本信息

项目摘要

The use of cutting fluid is beneficial in the machining technology in order to transport the process heat generated from the tool-workpiece interface and to reduce the frictional heat due to its lubricating effect. The thermo-mechanical load induced in this context has a considerable influence on the surface integrity and the associated functionality of the component. However, the thermal and mechanical load of the workpiece has been modeled separately in previous work. For a comprehensive understanding of the process, the investigation of the interaction between mechanical and thermal phenomena is necessary. Therefore, the main objective of the proposed research project is the multi-scale modeling of the thermal workpiece load in the turning process, considering the supply of cutting fluid and the tool wear condition. In the first funding period, a coupling approach between Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) is developed. The coupling approach is based on the iterative exchange of mechanical and thermal parameters between FEM and CFD. Based on FEM simulations and experiments, the chip geometry is calculated and used as the input for CFD mesh generation. In the CFD simulation, the heat transfer coefficients are then quantified and transferred to the FEM simulation, which then calculates the modified chip geometry. In addition, further sub-models are developed and validated for the description of the friction behavior as well as the contact heat transfer under consideration of cutting fluid. Overall, this iterative coupling approach can be used to determine the temperature distribution and gradients in the boundary layer of complex components during machining. By enhancing the FEM chip formation simulation to the actual tribological conditions considering friction and heat transfer models, a major scientific gap in modeling approaches is closed, and thus a comprehensive virtual image of the machining process under real conditions can be achieved.
切削液的使用有利于机械加工技术,可以传输刀具与工件界面产生的加工热量,并因其润滑作用而减少摩擦热。在这种情况下引起的热机械负载对部件的表面完整性和相关功能具有相当大的影响。然而,在之前的工作中,工件的热载荷和机械载荷已分别建模。为了全面了解该过程,有必要研究机械和热现象之间的相互作用。因此,本研究项目的主要目标是考虑切削液的供应和刀具磨损条件,对车削过程中工件热载荷进行多尺度建模。在第一个资助期间,开发了计算流体动力学(CFD)和有限元法(FEM)之间的耦合方法。耦合方法基于 FEM 和 CFD 之间机械和热参数的迭代交换。基于 FEM 模拟和实验,计算芯片几何形状并将其用作 CFD 网格生成的输入。在 CFD 模拟中,传热系数被量化并转移到 FEM 模拟,然后计算修改后的芯片几何形状。此外,还开发并验证了进一步的子模型,用于描述摩擦行为以及考虑切削液的接触传热。总体而言,这种迭代耦合方法可用于确定加工过程中复杂部件边界层的温度分布和梯度。通过将有限元切屑形成模拟增强到考虑摩擦和传热模型的实际摩擦条件,可以弥补建模方法中的主要科学差距,从而可以实现真实条件下加工过程的全面虚拟图像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Thomas Bergs其他文献

Professor Dr.-Ing. Thomas Bergs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Thomas Bergs', 18)}}的其他基金

Methodology for generating cross-technology metamodels (IKTINO)
生成跨技术元模型的方法(IKTINO)
  • 批准号:
    441745638
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Basic analysis and optimization of the flow behavior of thermoplastics by adjusting the surface of electrical discharge machined injection molds (EDSIMP)
通过调整放电加工注塑模具 (EDSIMP) 的表面对热塑性塑料的流动行为进行基本分析和优化
  • 批准号:
    447707042
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Microstructure-sensitive fatigue lifetime assessment considering forming history effects
考虑成形历史影响的微观结构敏感疲劳寿命评估
  • 批准号:
    432053466
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cost-optimized planning of changes in manufacturing of safety-critical components through systematic manufacturing change management
通过系统化的制造变更管理,对安全关键部件的制造变更进行成本优化规划
  • 批准号:
    437763513
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Product lifecycle-oriented optimization of the manufacturing phase and the use phase of precision tools
以产品生命周期为导向优化精密工具的制造阶段和使用阶段
  • 批准号:
    438069924
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Design model for the knowledge-based adjustment of the edge zone and surface properties of additive-manufactured components for guided centrifugal finishing
用于基于知识调整增材制造部件边缘区域和表面特性的设计模型,用于引导离心精加工
  • 批准号:
    429960079
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Compensation of Shape and Dimensional Deviations Due to Thermo-Elastic Deformation During Dry Machining
干式加工过程中热弹性变形引起的形状和尺寸偏差的补偿
  • 批准号:
    426824785
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Smooth Particle Hydrodynamic (SPH) Modeling of Grinding the SiC-SiC Ceramic Matrix Composite
SiC-SiC 陶瓷基复合材料磨削的光滑颗粒流体动力学 (SPH) 建模
  • 批准号:
    426949379
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Investigation of the interactions of incremental surface layer forming and HPPMS coating on fine blanking dies in order to enable a load-applied surface integrity adjustment (TEStOI)
研究精冲模具上增量表面层成形和 HPPMS 涂层的相互作用,以实现负载施加的表面完整性调整 (TEStOI)
  • 批准号:
    423492562
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Development and industrial application of a model for tool life prediction for multi-flank chip formation by means of bevel gear plunging processes
通过锥齿轮插铣工艺进行多齿面切屑形成的刀具寿命预测模型的开发和工业应用
  • 批准号:
    389555551
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)

相似国自然基金

时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向网约平台的大规模农机协同调度优化研究
  • 批准号:
    72301036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于黎曼流体空间的大规模知识图谱感知推荐关键技术研究
  • 批准号:
    62376135
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向大规模高维数据的高效相似性检索方法研究
  • 批准号:
    62302110
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于信息几何的超大规模MIMO传输理论方法研究
  • 批准号:
    62371125
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
RP4 LEAP
RP4飞跃
  • 批准号:
    10595904
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
  • 批准号:
    2239410
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Atlas for neuronal and glial cell types selectively vulnerable to proteinopathies during progression of Alzheimer's Disease
在阿尔茨海默病进展过程中选择性易受蛋白质病影响的神经元和神经胶质细胞类型图谱
  • 批准号:
    10667245
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了