Totally Disconnected Groups and their Automorphism
完全不连通群及其自同构
基本信息
- 批准号:43659331
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2007
- 资助国家:德国
- 起止时间:2006-12-31 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While specific classes of totally disconnected, locally compact topological groups (like profinite groups, automorphism groups of graphs and linear algebraic groups over local fields) have been studied successfully for a long time with specific tools, a structure theory for general totally disconnected groups only developed in the 1990s after a seminal paper by George A. Willis (Newcastle, N.S.W., Australia). The current project intends to enable further cooperation between G. A. Willis and the applicant, complemented by funding from the Australian side. Its goals are twofold:1. To develop further the structure theory of totally disconnected groups and their automorphisms, notably to obtain further insight into the contraction groups associated with automorphisms.2. To extend results previously only known for p-adic Lie groups and their automorphisms to the case of Lie groups over local fields of positive characteristic, using ideas from the general structure theory.
While specific classes of totally disconnected, locally compact topological groups (like profinite groups, automorphism groups of graphs and linear algebraic groups over local fields) have been studied successfully for a long time with specific tools, a structure theory for general totally disconnected groups only developed in the 1990s after a seminal paper by George A. Willis (Newcastle, N.S.W., Australia).当前的项目旨在使G. A. Willis与申请人之间进行进一步的合作,并通过澳大利亚方面的资金进行补充。它的目标是双重的:1。为了进一步发展完全断开的群体及其自动形态的结构理论,特别是为了进一步了解与自动形态相关的收缩群体。2。为了扩展以前仅针对P-Adic Lie群体及其自动形态闻名的结果,使用一般结构理论的思想,将谎言群体的谎言群体列为谎言群体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Helge Glöckner其他文献
Professor Dr. Helge Glöckner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Helge Glöckner', 18)}}的其他基金
Regularity properties of infinite-dimensional Lie groups, and exponential laws
无限维李群的正则性质和指数定律
- 批准号:
384439538 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Automorphisms and endomorphisms of locally compact groups
局部紧群的自同构和自同态
- 批准号:
387213559 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Aspects of non-archimedian non-linear analysis and functional analysis
非阿基米德非线性分析和泛函分析方面
- 批准号:
118701543 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Research Grants
Unendlich-dimensionale Analysis und Geometrie
无限维分析和几何
- 批准号:
40137093 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Heisenberg Professorships
Direct limit constructions in infinite-dimensional Lie theory
无限维李理论中的直接极限构造
- 批准号:
50049100 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Unendlich-dimensionale Liegruppen Total unzusammenhängende Gruppen, p-adische Liegruppen
无限维李群 完全不连通群,p进李群
- 批准号:
22176132 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Heisenberg Fellowships
Diffeomorphismengruppen nicht-kompakter Mannigfaltigkeiten
非紧流形的微分同胚群
- 批准号:
33360292 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Research Grants
Differential equations on infinite-dimensional Lie groups
无限维李群上的微分方程
- 批准号:
517512794 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Permutation groups, totally disconnected locally compact groups, and the local isomorphism relation.
置换群、完全不连通的局部紧群以及局部同构关系。
- 批准号:
EP/V036874/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Permutation groups with finite subdegrees and the structure of totally disconnected locally compact groups
有限次次置换群与完全不连通局部紧群的结构
- 批准号:
DE130101521 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Totally disconnected groups in algebra and geometry
代数和几何中完全不相连的群
- 批准号:
DP0984342 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Discovery Projects
Totally disconnected groups, representations and discrete mathematics
完全不相连的群、表示和离散数学
- 批准号:
LX0667119 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Linkage - International
Geometric representation of small-rank totally disconnected groups
小秩完全不连通群的几何表示
- 批准号:
DP0556017 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Discovery Projects