Discrete-Continuum Dislocation Dynamics at Surfaces and Interfaces with Application to Plasticity of Nanolaminated Composites

表面和界面处的离散连续位错动力学及其在纳米层压复合材料塑性中的应用

基本信息

项目摘要

We develop improved dislocation dynamics simuation approaches to investigate plastic deformation of nanolaminated metal composites. Such composites combine different metals into layered structures with layer thicknessse in the nanometre range. Their plastic deformation properteies are governed by the interactions of crystal lattice dislocations with the bimaterial interfaces of the laminate. On the atomic scale, these interactions are similar to processes occuring at internal interfaces (grain and twin boundaries), as atomic re-arrangements control the nucleation, absorption or transmission of dislocations. However, in laminates consisting of elastically dissimilar materials the elastic boundary conditions at the interfaces lead to additional, long-ranged elastic interactions: Dislocations of an elastically weaker material are repulsed by an interface with a stronger material, whereas dislocations of the stronger material are attracted (Koehler Effect). At the same time, the dislocation stress fields and stress-induced dislocation interactions are modified by the boundaries. In discrete dislocation dynamics simulations of nanolaminate plasticity it is therefore essential to accurately evaluate the influences of the bimaterial interfaces on the internal stress fields which enter the driving forces for dislocation motion. In recent years, the so-called discrete-continuum method (DCM) has led to important progress in dislocation dynamics simulation of elastic surface and interface effects. DCM uses a hybrid method to evaluate dislocation-related internal stress fields by superimposing the singular stress fields of dislocation segments with a slowly varying internal stress field that derives from solution of a coarse grained eigenstrain problem and accounts for boundary conditions at surfaces and interfaces. However, the singular segment stress fields have always been evaluated using bulk expressions which are inaccurate near surfaces/interfaces, leading to a mismatch with the coarse grained solution and to an inaccurate representation of the forces acting on dislocations. We resolve this problem by accounting for analytical corrections to the singular stress fields near surfaces and interfaces as derived in recent years by Prof. Yuan, who participates in the Project as a Mercator Fellow. Our improved DCM approach will provide an accurate description of interface effects and complex deformation boundary conditions (nanoindentation) in plastic deformation of nanolaminates. We will exploit this capability to understand complex observations such as strength inversion in Cu-Au Laminates (the elastically stronger Cu may show more plastic deformation than the elastically weaker Au), and to analyze and optimize the behavior of graded nanolaminates under different loading conditions.
我们开发了改进的错位动力学模拟方法,以研究纳米胶质金属复合材料的塑性变形。这种复合材料将不同的金属组合为层厚度的分层结构。它们的塑性变形特性由晶格位错的相互作用与层压板的双质界面的相互作用。在原子量表上,这些相互作用类似于内部界面(晶粒和双边界)处发生的过程,因为原子重新排列控制了核的成核,吸收或传播。然而,在由弹性材料组成的层压板中,界面处的弹性边界条件会导致额外的,长期的弹性相互作用:弹性较弱的材料的位错被具有更强材料的界面排斥,而较强材料的脱位则吸引了较强的材料的位置(koehler效应)。同时,脱位应力场和应力诱导的脱位相互作用被边界修改。因此,在纳米氨酸塑料的离散脱位动力学模拟中,必须准确评估双质界面对内部应力场的影响至关重要。近年来,所谓的离散核法(DCM)导致了弹性表面和界面效应的脱位动力学模拟的重要进展。 DCM使用一种混合方法来评估与位错相关的内部应力场,通过将脱位段的奇异应力场叠加,其内部应力场较慢,从而源自粗粒状特征性特征性问题,并说明表面和接口处的边界条件。然而,始终使用在表面/接口附近不准确的散装表达式评估了奇异的片段应力场,从而导致与粗粒溶液的不匹配,并导致作用于错位的力的不准确表示。我们通过对近年来Yuan教授提出的分析性校正来解决该问题,该问题在表面和界面附近的奇异应力场和界面附近,他是Mercator研究员参加该项目的。我们改进的DCM方法将对纳米胺的塑性变形中的界面效应和复杂变形边界条件(纳米凹痕)提供准确的描述。我们将利用这种能力来理解复杂的观测值,例如Cu-Au层压板中的强度反转(弹性强的CU可能比弹性弱Au显示出更大的塑性变形),并在不同的负载条件下分析和优化分级纳米胺的行为。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Zaiser其他文献

Professor Dr. Michael Zaiser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Zaiser', 18)}}的其他基金

Molecular Simulations for Development of CarbonNanoparticle - Metal Nanocomposites
碳纳米颗粒-金属纳米复合材料开发的分子模拟
  • 批准号:
    397972581
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deterministic and Stochastic Continuum Models of Dislocation Patterning
位错图案的确定性和随机连续体模型
  • 批准号:
    273908262
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Units
Exploiting Artificial Intelligence for PredictingSubcritical Failure of Microstructurally Disordered Materials
利用人工智能预测微观结构无序材料的亚临界失效
  • 批准号:
    446245542
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Fracture and Failure Properties of Hierarchically Architectured Materials
分层结构材料的断裂和失效特性
  • 批准号:
    313904396
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

面向经鼻颅底手术的微型复合连续体机器人研究
  • 批准号:
    52375020
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于粒径分级的单体分子碳-14方法研究珠江口-近海连续体陆源有机质的迁移、老化及埋藏
  • 批准号:
    42376043
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于连续体的无人系统柔性对接机理及变构控制方法研究
  • 批准号:
    52375023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
双船浮托荷载转移过程多体耦合作用机理及连续模拟方法研究
  • 批准号:
    52301351
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
西南地区梯级水库陆地-淡水连续体磷形态及迁移转化研究
  • 批准号:
    42377082
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Continuum Dislocation Dynamics Modeling of Mesoscale Crystal Plasticity at Finite Deformation
有限变形下介观晶体塑性的连续体位错动力学建模
  • 批准号:
    1663311
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deterministic and Stochastic Continuum Models of Dislocation Patterning
位错图案的确定性和随机连续体模型
  • 批准号:
    273908262
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Units
Constitutive laws for continuum dislocation dynamics
连续体位错动力学的本构定律
  • 批准号:
    273907642
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Units
Multiple slip in continuum dislocation dynamics: dislocation reactison, cross slip and the formation of dislocation sources
连续体位错动力学中的多重滑移:位错反应、交叉滑移和位错源的形成
  • 批准号:
    257050271
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Continuum dislocation theory for severe plastic deformation of aluminium alloys (GP01-G*)
铝合金剧烈塑性变形的连续位错理论(GP01-G*)
  • 批准号:
    252110633
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Collaborative Research Centres
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了