コンピュータ上での無限精度実数の実現
在计算机上实现无限精度实数
基本信息
- 批准号:10780207
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本年度は、昨年度の研究で提唱したGray code表現という実数の無限列の上での表現、および、NM2-machine(in-deterministic multihead type 2 machine)という計算の枠組みを元に、それを実現するプログラミング言語に関する研究、実数計算の本質にも存在する多重定義とそのCoherenceの問題に関する研究を行った。まず、Gray code表現を、不定元を高々1つだけ持つ無限文字列の上の表現と考え、一般に不定元を高々n個だけ持つ無限文字列の上の計算の枠組みとして、IM2-machineを定義しなおした。そして、IM2-machineの計算が、プログラミング言語の中でどのように表現可能か調べた。Haskellに代表される遅延評価の関数型言語では、IM2マシンの動作を自然に表現可能であるが、実行の仕組みが異なり、実行することができない。それに対して、GHC,および、継続を扱えるPrologにおいては、IM2-machineと等価なプログラミングを書き、実行することができることが示せた。その結果は、日本ソフトウェア科学会の「プログラミングとプログラミング言語に関する会議」において、発表した。また、実数の計算の上で、多重定義が必然的に生じるが、多重定義のCoherenceと意味論との関係についても調べた。その成果は、エジンバラ大学で行われた「カテゴリ理論と計算機科学国際会議」において発表した。京都で5月に行われた第4回PAセミナーにおいても講演した。また、Gray codeとIM2-machineの枠組みについて、論文を投稿し、エジンバラ大学で行われた「意味論の応用ワークショップ」において発表し、セントアンドリュース大学でも講演を行った。
This year, based on the Gray code expression, which was proposed in last year's research, which is a representation of real numbers on an infinite sequence, and the calculation framework called NM2-machine (in-deterministic multihead type 2 machine), we conducted research on programming languages that realize this, and research on the problems of overloaded definitions and their coherence, which exist in the essence of real number calculations.首先,我们将灰色代码表达式视为最多具有一个不确定元素的无限字符串上方的表达式,并且我们将IM2-machine重新定义为无限字符串上方计算的框架,而无限字符串最多具有不确定的元素。然后,我们研究了如何用编程语言表达IM2计算的计算。具有懒惰评估的功能性语言,例如Haskell,可以自然地表达IM2机器的行为,但是执行机制是不同的,无法执行。相比之下,已经表明,可以处理GHC和连续性的Prolog可以编写和执行与IM2-Machine相等的编程。结果在日本软件科学协会的“编程和编程语言会议”上介绍。此外,在实数的计算中必须产生过载定义,但我们还研究了过载相干性和语义之间的关系。结果在爱丁堡大学的国际类别理论与计算机科学会议上介绍。他还在5月在京都举行的第四届PA研讨会上进行了演讲。他还提交了关于灰色代码和IM2机器框架的论文,并在爱丁堡大学举行的“语义申请研讨会”上介绍,并在圣安德鲁大学进行了演讲。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideki Tsuiki: "A computationally adequate model for overloding via domain-valued functions" Math.Stvact.Comp.Science. 8巻. 321-349 (1998)
Hideki Tsuiki:“通过域值函数进行过载的计算足够的模型”Math.Stvact.Comp.Science Vol. 8. 321-349 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
HIDEKI TSUIKI: "A domain-theoretic semantics of lax generic functions"Electronic Notes on Theoretical Computer Science. 29. (1999)
HIDEKI TSUIKI:“松散泛型函数的领域理论语义”理论计算机科学电子笔记。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
立木秀樹: "不決定性マルチヘッド・ストリーム・プログラミングのGHCによる実現"Proc.プログラミングとプログラミング言語に関するワークショップ. (発表予定)(未定). (2000)
Hideki Tachiki:“使用 GHC 实现非确定性多头流编程”Proc。关于编程和编程语言的研讨会(演示时间表)(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
立木 秀樹其他文献
full-folding map が生成するコードの再帰性について
关于全折叠地图生成代码的递归
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arno Pauly;Hideki Tsuiki;立木 秀樹 - 通讯作者:
立木 秀樹
シェルピンスキー四面体および関連したフラクタル の 2 次元射影について
谢尔宾斯基四面体的二维投影及相关分形
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wang Licheng;Zhang Zonghua;Dong Mianxiong;Wang Lihua;Cao Zhenfu;Yang Yixian;立木 秀樹 - 通讯作者:
立木 秀樹
イマジナリーキューブ・タイリングと16-cell タイリングの切断面
假想立方体平铺和 16 单元平铺的切割表面
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Cruz Jason Paul;Kaji Yuichi;Yanai Naoto;Lihua Wang;Lihua Wang;立木 秀樹 - 通讯作者:
立木 秀樹
立木 秀樹的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('立木 秀樹', 18)}}的其他基金
連続な空間上の計算とその複雑さの研究
连续空间计算及其复杂性研究
- 批准号:
23K28036 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
連続な空間上の計算とその複雑さの研究
连续空间计算及其复杂性研究
- 批准号:
23H03346 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
実数プログラミングと実関数の計算可能性
实数编程和实函数的可计算性
- 批准号:
12780217 - 财政年份:2000
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Lax Trans formationを用いたPolymorphismの意味づけ
使用 Lax Trans 形成的多态性的含义
- 批准号:
08780314 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
マージの機構によるオブジェクト指向言語の型システムの研究
利用合并机制研究面向对象语言的类型系统
- 批准号:
07780292 - 财政年份:1995
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
ニューラルネットを用いた仮名漢字変換の研究
利用神经网络进行假名汉字转换的研究
- 批准号:
06780337 - 财政年份:1994
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
古典論理を基礎とした同期プリミティブを持つ,並列プログラム言語の研究
基于经典逻辑的同步原语并行编程语言研究
- 批准号:
03858008 - 财政年份:1991
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
解の性能根拠を示す説明可能な進化計算
可解释的进化计算为解决方案提供性能证据
- 批准号:
23K20388 - 财政年份:2024
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
脳の計算論と生物学の統合による感覚減衰の発生機序の解明及び精神疾患理解への展開
通过脑计算和生物学的结合阐明感觉衰减的机制并发展对精神障碍的理解
- 批准号:
22KJ3167 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New frontiers in reverse mathematics with the multidimensional perspective
多维视角逆向数学新领域
- 批准号:
23K03193 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
計算可能性に関する諸構造についての圏論的な一般理論の構築
与可计算性相关的结构范畴论一般理论的构建
- 批准号:
23KJ1365 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
第一原理網羅計算プラットホームの開発と説明可能な機械学習モデルによる法則の獲得
开发第一性原理综合计算平台并利用可解释的机器学习模型获取规律
- 批准号:
23K03950 - 财政年份:2023
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)