Simulation based process analysis of the powder bed additive manufacturing process Selective Laser Melting (SLM)

基于仿真的粉末床增材制造工艺选择性激光熔化 (SLM) 工艺分析

基本信息

项目摘要

Laser based Additive Manufacturing technologies such as powder bed based selective laser melting allow an almost unlimited geometrical freedom in the production of metallic functional parts. Due to existing process deficits like residual stresses and part distortion this immense potential for the production of functional parts of high complexity can be exploited in a limited way only. This is caused by the currently insufficient understanding of the involved physical processes both locally in the interaction or process zone (e.g. beam propagation in the powder layer, evaporation) and globally in the part (thermomechanics). Neither part nor specific to material there are currently concrete recommendation regarding a stress or distortion minimizing process management. The scientific benefits of the project is given by the development of a multiscale simulation of the SLM process, which reduces the computation time for a thermomechanical simulation by using multiscale methods and parallelized algorithms. By the computational prediction of distortion and residual stresses a gained understanding of the process will help to identify process strategies for stress and distortion-minimizing production. The aim of this project is to reduce the number of degrees of freedom (factor 1,000-10,000) required for simulations of parts by means of multiscale approaches, thus realizing a macro-simulation of the process in which the welding sequence, the supporting structures and process parameters are taken into account. Further development of an existing model for the process zone (meso-scale) which allows a sufficiently accurate calculation of the temperature fields in acceptable computation times (<1h) is necessary for the construction of the multiscale simulation. The calculated temperature-time cycles are the input for a multiscale simulation for the thermomechanical processes of parts. Based on the gained understanding of the process the relevant process variables will be identified and experimental process strategies for stress and distortion-minimizing production will be developed and validated using relevant parts.
基于激光的增材制造技术(例如基于粉末床的选择性激光熔化)在金属功能部件的生产中实现了几乎无限的几何自由度。由于残余应力和零件变形等现有工艺缺陷,这种生产高复杂性功能零件的巨大潜力只能以有限的方式发挥。这是由于目前对相互作用或加工区域中的局部物理过程(例如粉末层中的光束传播、蒸发)和零件中的全局物理过程(热力学)了解不足造成的。目前,无论是部分还是具体材料,都没有关于应力或变形最小化过程管理的具体建议。该项目的科学优势在于开发了 SLM 过程的多尺度模拟,通过使用多尺度方法和并行算法减少了热机械模拟的计算时间。通过对变形和残余应力的计算预测,对过程的了解将有助于确定应力和变形最小化生产的过程策略。该项目的目的是通过多尺度方法减少零件模拟所需的自由度(1,000-10,000倍),从而实现焊接顺序、支撑结构和焊接过程的宏观模拟。工艺参数被考虑在内。进一步开发现有的过程区模型(介观尺度),可以在可接受的计算时间内(<1小时)对温度场进行足够精确的计算,这对于构建多尺度模拟是必要的。计算出的温度-时间循环是零件热机械过程多尺度模拟的输入。基于对工艺的了解,将确定相关工艺变量,并使用相关部件开发和验证应力和变形最小化生产的实验工艺策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Johannes Henrich Schleifenbaum, since 12/2019其他文献

Professor Dr.-Ing. Johannes Henrich Schleifenbaum, since 12/2019的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于多源亚米级监测的雪崩过程模拟及其预报研究
  • 批准号:
    42371146
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于日光诱导叶绿素荧光的沙区樟子松人工林光合水力过程模拟及光合生产力、水分利用解析
  • 批准号:
    32371960
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于扰动情景模拟的山地城市生态基础设施韧性演变过程与影响机制研究——以重庆都市圈为例
  • 批准号:
    42301299
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于陆面数据同化的黄河源区土壤冻融过程模拟及其对气候变化的响应机制研究
  • 批准号:
    42371021
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于分布式水文模型的流域抗生素多介质模拟与全过程环境风险管控
  • 批准号:
    42377379
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Caring for Providers to Improve Patient Experience (CPIPE) Study
关爱医疗服务提供者以改善患者体验 (CPIPE) 研究
  • 批准号:
    10556284
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Computational Infrastructure for Automated Force Field Development and Optimization
用于自动力场开发和优化的计算基础设施
  • 批准号:
    10699200
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Preparing for Blood-Based Alzheimer’s Disease Biomarker Testing in Diverse Populations: Development of a Decision-Support Tool for Primary Care
为不同人群进行基于血液的阿尔茨海默病生物标志物测试做好准备:开发初级保健决策支持工具
  • 批准号:
    10722716
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Ultra-dense ceramic scintillator for BrainPET scanner
用于 BrainPET 扫描仪的超致密陶瓷闪烁体
  • 批准号:
    10761208
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a Video-based Personal Protective Equipment Monitoring System
基于视频的个人防护装备监控系统的开发
  • 批准号:
    10585548
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了