Joint Iterative Reconstruction and Motion Compensation for Optical Coherence Tomography Angiography
光学相干断层扫描血管造影的联合迭代重建和运动补偿
基本信息
- 批准号:414781207
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2019
- 资助国家:德国
- 起止时间:2018-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While OCTA imaging has shown great promise for improving patient care in ophthalmology, its full potential has been limited. There is an urgent need for robust and accurate motion detection and correction and improved OCTA processing algorithms that will decrease noise levels and improve image quality and resolution. Furthermore, there is only few open-source software that enables researchers from around the world to produce high quality images. In order to address these needs, the project will pursue the following objectives:A) Improved motion compensation including the use of the OCTA signal for improved data consistency, more accurate motion models that allow affine motions such as rotation and scaling, and integration of surrogate signals stemming from camera-based eye-tracking or navigator-based motion estimation approaches yielding a full 3-D correction for all acquired A-scan data.B) Physically correct OCTA signal extraction that employs compressive sensing-based regularization approaches in the OCTA signal extraction and integrates the full 3-D motion model from Objective A including the interpolation process in combination with correct physical noise models.C) Precision Learning Reconstruction that augments the physically correct model from Objective B with additional deep learning techniques to learn data-optimal sparse domains and optimal navigator patterns for motion signal extraction.All software created in this project will be published as open source software.
尽管八颗成像显示了改善眼科患者护理的巨大希望,但其全部潜力受到限制。迫切需要强大而准确的运动检测和校正以及改进的八八个处理算法,以降低噪声水平并提高图像质量和分辨率。此外,只有很少的开源软件可以使来自世界各地的研究人员能够产生高质量的图像。 In order to address these needs, the project will pursue the following objectives:A) Improved motion compensation including the use of the OCTA signal for improved data consistency, more accurate motion models that allow affine motions such as rotation and scaling, and integration of surrogate signals stemming from camera-based eye-tracking or navigator-based motion estimation approaches yielding a full 3-D correction for all acquired A-scan data.B) Physically correct OCTA signal extraction that employs OCTA信号提取中的基于压缩感应的正则化方法,并从目标A中整合了完整的3-D运动模型,包括插值过程,结合了正确的物理噪声模型。C)精确学习重建,从目标B中增强了从物理B中正确正确的模型与其他深度学习技术,以使数据 - 稀疏的稀疏域和最佳的Navigator模式供应,以便在该项目中创建了一个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Professor Dr.-Ing....的其他基金
Improved characterization of failure behaviours of sheet metals based on pattern recognition methods
基于模式识别方法改进金属板材失效行为表征
- 批准号:325262702325262702
- 财政年份:2017
- 资助金额:----
- 项目类别:Research GrantsResearch Grants
Consistency Conditions for Artifact Reduction in Cone-beam CT
锥束CT伪影减少的一致性条件
- 批准号:273134754273134754
- 财政年份:2015
- 资助金额:----
- 项目类别:Research GrantsResearch Grants
Temporally resolved 3-D retinal blood flow quantification using advanced motion correction and signal reconstruction in optical coherence tomography angiography
在光学相干断层扫描血管造影中使用先进的运动校正和信号重建进行时间分辨 3D 视网膜血流定量
- 批准号:508075009508075009
- 财政年份:
- 资助金额:----
- 项目类别:Research GrantsResearch Grants
相似国自然基金
图像质量评价模型引导的CT迭代重建方法研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
基于深度学习的低剂量显微CT高质量成像方法研究
- 批准号:61871126
- 批准年份:2018
- 资助金额:67.0 万元
- 项目类别:面上项目
基于深度学习的递变能量多谱CT成像表征方法研究
- 批准号:61871351
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
点云曲面重建中多元样条几何迭代方法的加速研究及应用
- 批准号:11801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
多先验信息约束的低剂量CPCT优质成像方法研究
- 批准号:11701097
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ディープラーニング技術を使用した上腹部CT検査における低線量プロトコルの開発
利用深度学习技术开发上腹部CT检查低剂量方案
- 批准号:22K1586122K15861
- 财政年份:2022
- 资助金额:----
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
CIF: Small: Efficient Model-Based Iterative Reconstruction For High Resolution CT
CIF:小型:基于模型的高效迭代重建高分辨率 CT
- 批准号:22108662210866
- 财政年份:2022
- 资助金额:----
- 项目类别:Standard GrantStandard Grant
Development of low-dose dynamic myocardial CT perfusion protocol using iterative reconstruction
使用迭代重建开发低剂量动态心肌 CT 灌注方案
- 批准号:21K1576721K15767
- 财政年份:2021
- 资助金额:----
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Development and clinical application of minimally invasive myocardial CT perfusion imaging for optimal myocardial ischemia assessment
优化心肌缺血评估的微创心肌CT灌注成像的开发和临床应用
- 批准号:20K1676020K16760
- 财政年份:2020
- 资助金额:----
- 项目类别:Grant-in-Aid for Early-Career ScientistsGrant-in-Aid for Early-Career Scientists
Hybrid method for iterative CT reconstruction and deep learning
迭代 CT 重建和深度学习的混合方法
- 批准号:19K0809319K08093
- 财政年份:2019
- 资助金额:----
- 项目类别:Grant-in-Aid for Scientific Research (C)Grant-in-Aid for Scientific Research (C)